ZNF507 affects TGF-β signaling via TGFBR1 and MAP3K8 activation in the progression of prostate cancer to an aggressive state
-
Published:2021-09-18
Issue:1
Volume:40
Page:
-
ISSN:1756-9966
-
Container-title:Journal of Experimental & Clinical Cancer Research
-
language:en
-
Short-container-title:J Exp Clin Cancer Res
Author:
Kwon Wookbong, Choi Seong-KyoonORCID, Kim Daehwan, Kim Hyeon-Gyeom, Park Jin-Kyu, Han Jee Eun, Cho Gil-Jae, Yun Sungho, Yu Wookyung, Han Se-Hyeon, Ha Yun-Sok, Lee Jun Nyung, Kwon Tae Gyun, Cho Dong-Hyung, Yi Jun-Koo, Kim Myoung Ok, Ryoo Zae Young, Park Song
Abstract
Abstract
Background
The progression of prostate cancer (PC) to the highly aggressive metastatic castration-resistant prostate cancer (mCRPC) or neuroendocrine prostate cancer (NEPC) is a fatal condition and the underlying molecular mechanisms are poorly understood. Here, we identified the novel transcriptional factor ZNF507 as a key mediator in the progression of PC to an aggressive state.
Methods
We analyzed ZNF507 expression in the data from various human PC database and high-grade PC patient samples. By establishment of ZNF507 knockdown and overexpression human PC cell lines, we assessed in vitro PC phenotype changes including cell proliferation, survival, migration and invasion. By performing microarray with ZNF507 knockdown PC cells, we profiled the gene clusters affected by ZNF507 knockdown. Moreover, ZNF507 regulated key signal was evaluated by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Finally, we performed xenograft and in vivo metastasis assay to confirm the effect of ZNF507 knockdown in PC cells.
Results
We found that ZNF507 expression was increased, particularly in the highly graded PC. ZNF507 was also found to be associated with metastatic PC of a high grade. Loss- or gain-of-function–based analysis revealed that ZNF507 promotes the growth, survival, proliferation, and metastatic properties of PC (e.g., epithelial-mesenchymal transition) by upregulating TGF-β signaling. Profiling of gene clusters affected by ZNF507 knockdown revealed that ZNF507 positively regulated the transcription of TGFBR1, MAP3K8, and FURIN, which in turn promoted the progression of PC to highly metastatic and aggressive state.
Conclusions
Our findings suggest that ZNF507 is a novel key regulator of TGF-β signaling in the progression of malignant PC and could be a promising target for studying the development of advanced metastatic PCs.
Funder
National Research Foundation of Korea Ministry of Science, ICT and Future Planning
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology
Reference64 articles.
1. Global Burden of Disease. Cancer C, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the Global Burden of Disease study. JAMA Oncol. 2019; 5: 1749–68. 2. Van Hemelrijck M, Folkvaljon Y, Adolfsson J, Akre O, Holmberg L, Garmo H, et al. Causes of death in men with localized prostate cancer: a nationwide, population-based study. BJU Int. 2016;117:507–14. 3. Teo MY, Rathkopf DE, Kantoff P. Treatment of advanced prostate cancer. Annu Rev Med. 2019;70:479–99. 4. Zhang Q, Yin X, Pan Z, Cao Y, Han S, Gao G, et al. Identification of potential diagnostic and prognostic biomarkers for prostate cancer. Oncol Lett. 2019;18:4237–45. 5. Seisen T, Roupret M, Gomez F, Malouf GG, Shariat SF, Peyronnet B, et al. A comprehensive review of genomic landscape, biomarkers and treatment sequencing in castration-resistant prostate cancer. Cancer Treat Rev. 2016;48:25–33.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|