LncRNA FAM83H-AS1 promotes the malignant progression of pancreatic ductal adenocarcinoma by stabilizing FAM83H mRNA to protect β-catenin from degradation

Author:

Zhou Min,Pan Shutao,Qin Tingting,Zhao Chunle,Yin Taoyuan,Gao Yang,Liu Yuhui,Zhang Zhenxiong,Shi Yongkang,Bai Yu,Gong Jun,Guo Xingjun,Wang Min,Qin Renyi

Abstract

Abstract Background Pancreatic ductal adenocarcinoma is prone to metastasis, resulting in short survival and low quality of life. LncRNAs are pivotal orchestrators that participate in various tumor progress. The underlying role and mechanism of lncRNA FAM83H-AS1 is still unknown in PDAC progression. Methods To address this issue, firstly, we profiled and analyzed the aberrant lncRNA expression in TCGA database and identified FAM83H-AS1 as the most effective one in promoting the migration of pancreatic cancer cells. Then, the expression levels of FAM83H-AS1 in patient’s serum, tumor tissues and PDAC cells were detected using RT-qPCR, and FAM83H-AS1 distribution in PDAC cells was determined by performing FISH and RT-qPCR. Next, a series of in vivo and in vitro functional assays were conducted to elucidate the role of FAM83H-AS1 in cell growth and metastasis in PDAC. The regulatory relationship between FAM83H-AS1 and FAM83H (the homologous gene of FAM83H-AS1) was verified by performing protein and RNA degradation assays respectively. Co-IP assays were performed to explore the potential regulatory mechanism of FAM83H to β-catenin. Rescue assays were performed to validate the regulation of the FAM83H-AS1/FAM83H/β-catenin axis in PDAC progression. Results FAM83H-AS1 was highly expressed in the tumor tissues and serum of patients with PDAC, and was correlated with shorter survival. FAM83H-AS1 significantly promoted the proliferation, invasion and metastasis of PDAC cells, by protecting FAM83H mRNA from degradation. Importantly, FAM83H protein manifested the similar malignant functions as that of FAM83H-AS1 in PDAC cells, and could bind to β-catenin. Specifically, FAM83H could decrease the ubiquitylation of β-catenin, and accordingly activated the effector genes of Wnt/β-catenin signaling. Conclusions Collectively, FAM83H-AS1 could promote FAM83H expression by stabilizing its mRNA, allowing FAM83H to decrease the ubiquitylation of β-catenin, thus resulted in an amplified FAM83H-AS1/FAM83H/β-catenin signal axis to promote PDAC progression. FAM83H-AS1 might be a novel prognostic and therapeutic target for combating PDAC.

Funder

Key Technologies Research and Development Program

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3