Identification of a novel gene signature predicting response to first-line chemotherapy in BRCA wild-type high-grade serous ovarian cancer patients

Author:

Buttarelli Marianna,Ciucci Alessandra,Palluzzi Fernando,Raspaglio Giuseppina,Marchetti Claudia,Perrone Emanuele,Minucci Angelo,Giacò Luciano,Fagotti Anna,Scambia Giovanni,Gallo DanielaORCID

Abstract

Abstract Background High-grade serous ovarian cancer (HGSOC) has poor survival rates due to a combination of diagnosis at advanced stage and disease recurrence as a result of chemotherapy resistance. In BRCA1 (Breast Cancer gene 1) - or BRCA2-wild type (BRCAwt) HGSOC patients, resistance and progressive disease occur earlier and more often than in mutated BRCA. Identification of biomarkers helpful in predicting response to first-line chemotherapy is a challenge to improve BRCAwt HGSOC management. Methods To identify a gene signature that can predict response to first-line chemotherapy, pre-treatment tumor biopsies from a restricted cohort of BRCAwt HGSOC patients were profiled by RNA sequencing (RNA-Seq) technology. Patients were sub-grouped according to platinum-free interval (PFI), into sensitive (PFI > 12 months) and resistant (PFI < 6 months). The gene panel identified by RNA-seq analysis was then tested by high-throughput quantitative real-time PCR (HT RT-qPCR) in a validation cohort, and statistical/bioinformatic methods were used to identify eligible markers and to explore the relevant pathway/gene network enrichments of the identified gene set. Finally, a panel of primary HGSOC cell lines was exploited to uncover cell-autonomous mechanisms of resistance. Results RNA-seq identified a 42-gene panel discriminating sensitive and resistant BRCAwt HGSOC patients and pathway analysis pointed to the immune system as a possible driver of chemotherapy response. From the extended cohort analysis of the 42 DEGs (differentially expressed genes), a statistical approach combined with the random forest classifier model generated a ten-gene signature predictive of response to first-line chemotherapy. The ten-gene signature included: CKB (Creatine kinase B), CTNNBL1 (Catenin, beta like 1), GNG11 (G protein subunit gamma 11), IGFBP7 (Insulin-like growth factor-binding protein 7), PLCG2 (Phospholipase C, gamma 2), RNF24 (Ring finger protein 24), SLC15A3 (Solute carrier family 15 member 3), TSPAN31 (Tetraspanin 31), TTI1 (TELO2 interacting protein 1) and UQCC1 (Ubiquinol-cytochrome c reductase complex assembly factor). Cytotoxicity assays, combined with gene-expression analysis in primary HGSOC cell lines, allowed to define CTNNBL1, RNF24, and TTI1 as cell-autonomous contributors to tumor resistance. Conclusions Using machine-learning techniques we have identified a gene signature that could predict response to first-line chemotherapy in BRCAwt HGSOC patients, providing a useful tool towards personalized treatment modalities.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3