PCSK9 facilitates melanoma pathogenesis via a network regulating tumor immunity

Author:

Gu Yan,Lin Xiaozeng,Dong Ying,Wood Geoffrey,Seidah Nabil G.,Werstuck Geoff,Major Pierre,Bonert Michael,Kapoor Anil,Tang Damu

Abstract

Abstract Background PCSK9 regulates cholesterol homeostasis and promotes tumorigenesis. However, the relevance of these two actions and the mechanisms underlying PCSK9’s oncogenic roles in melanoma and other cancers remain unclear. Methods PCSK9’s association with melanoma was analysed using the TCGA dataset. Empty vector (EV), PCSK9, gain-of-function (D374Y), and loss-of-function (Q152H) PCSK9 mutant were stably-expressed in murine melanoma B16 cells and studied for impact on B16 cell-derived oncogenesis in vitro and in vivo using syngeneic C57BL/6 and Pcsk9−/− mice. Intratumoral accumulation of cholesterol was determined. RNA-seq was performed on individual tumor types. Differentially-expressed genes (DEGs) were derived from the comparisons of B16 PCSK9, B16 D374Y, or B16 Q152H tumors to B16 EV allografts and analysed for pathway alterations. Results PCSK9 expression and its network negatively correlated with the survival probability of patients with melanoma. PCSK9 promoted B16 cell proliferation, migration, and growth in soft agar in vitro, formation of tumors in C57BL/6 mice in vivo, and accumulation of intratumoral cholesterol in a manner reflecting its regulation of the low-density lipoprotein receptor (LDLR): Q152H, EV, PCSK9, and D374Y. Tumor-associated T cells, CD8 + T cells, and NK cells were significantly increased in D374Y tumors along with upregulations of multiple immune checkpoints, IFNγ, and 143 genes associated with T cell dysfunction. Overlap of 36 genes between the D374Y DEGs and the PCSK9 DEGs predicted poor prognosis of melanoma and resistance to immune checkpoint blockade (ICB) therapy. CYTH4, DENND1C, AOAH, TBC1D10C, EPSTI1, GIMAP7, and FASL (FAS ligand) were novel predictors of ICB therapy and displayed high level of correlations with multiple immune checkpoints in melanoma and across 30 human cancers. We observed FAS ligand being among the most robust biomarkers of ICB treatment and constructed two novel and effective multigene panels predicting response to ICB therapy. The profiles of allografts produced by B16 EV, PCSK9, D374Y, and Q152H remained comparable in C57BL/6 and Pcsk9−/− mice. Conclusions Tumor-derived PCSK9 plays a critical role in melanoma pathogenesis. PCSK9’s oncogenic actions are associated with intratumoral cholesterol accumulation. PCSK9 systemically affects the immune system, contributing to melanoma immune evasion. Novel biomarkers derived from the PCSK9-network effectively predicted ICB therapy responses.

Funder

Canadian Institutes of Health Research

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3