Author:
Sun Yuchen,Wang Jizhao,Ma Yuan,Li Jing,Sun Xuanzi,Zhao Xu,Shi Xiaobo,Hu Yunfeng,Qu Fengyi,Zhang Xiaozhi
Abstract
Abstract
Background
Radioresistance, a poorly understood phenomenon, results in the failure of radiotherapy and subsequent local recurrence, threatening a large proportion of patients with ESCC. To date, lncRNAs have been reported to be involved in diverse biological processes, including radioresistance.
Methods
FISH and qRT–PCR were adopted to examine the expression and localization of lncRNA-NORAD, pri-miR-199a1 and miR-199a-5p. Electron microscopy and nanoparticle tracking analysis (NTA) were conducted to observe and identify exosomes. High-throughput microRNAs sequencing and TMT mass spectrometry were performed to identify the functional miRNA and proteins. A series of in vitro and in vivo experiments were performed to investigate the biological effect of NORAD. ChIP, RIP-qPCR, co-IP and dual-luciferase reporter assays were conducted to explore the interaction of related RNAs and proteins.
Results
We show here that DNA damage activates the noncoding RNA NORAD, which is critical for ESCC radioresistance. NORAD was expressed at high levels in radioresistant ESCC cells. Radiation treatment promotes NORAD expression by enhancing H3K4me2 enrichment in its sequence. NORAD knockdown cells exhibit significant hypersensitivity to radiation in vivo and in vitro. NORAD is required to initiate the repair and restart of stalled forks, G2 cycle arrest and homologous recombination repair upon radiation treatment. Mechanistically, NORAD inhibits miR-199a-5p expression by competitively binding PUM1 from pri-miR-199a1, inhibiting the processing of pri-miR-199a1. Mature miR-199a-5p in NORAD knockdown cells is packaged into exosomes; miR-199a-5p restores the radiosensitivity of radioresistant cells by targeting EEPD1 and then inhibiting the ATR/Chk1 signalling pathway. Simultaneously, NORAD knockdown inhibits the ubiquitination of PD-L1, leading to a better response to radiation and anti-PD-1 treatment in a mouse model.
Conclusions
Based on the findings of this study, lncRNA-NORAD represents a potential treatment target for improving the efficiency of immunotherapy in combination with radiation in ESCC.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献