Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis

Author:

Huang Xiu-Yan,Huang Zi-Li,Huang Jin,Xu Bin,Huang Xin-Yu,Xu Yong-Hua,Zhou Jian,Tang Zhao-You

Abstract

Abstract Background Exosomes play crucial roles in regulating the crosstalk between normal and cancer cells in the tumor microenvironment, and in regulating cancer proliferation, migration and invasion through their cargo molecules. Methods We analyzed the pro-invasiveness of exosomal circRNA-100,338 in HCC using the transwell invasion assay. The co-culture of human umbilical vein endothelial cells (HUVEC) and exosomes derived from HCC cell lines were used to evaluate the impact of HCC derived exosomes on HUVEC. Nude mice models were used to validate the findings in vitro. Clinically, quantitative RT-PCR was used to quantify the expression of serum exosomal circRNA-100,338 in HCC patients at both pre-surgery within one week and post-surgery within three weeks. Results We aim to investigate the pro-invasive role of exosomal circRNA-100,338 in HCC metastasis. We for the first time demonstrated that circRNA-100,338 was highly expressed in both highly metastatic HCC cells and their secreted exosomes. The transwell invasion assay showed that the overexpression or knockdown of exosomal circRNA-100,338 significantly enhanced or reduced the invasive abilities of HCC cells. Subsequently, in vitro and in vivo assays showed that exosomal circRNA-100,338 affected the cell proliferation, angiogenesis, permeability, and vasculogenic mimicry (VM) formation ability of human umbilical vein endothelial cells (HUVEC), and tumor metastasis. Furthermore, we also observed that the persistent high expression of exosomal circRNA-100,338 in serum of HCC patients who underwent curative hepatectomy may be a risk indicator of pulmonary metastasis and poor survival. Conclusions Our findings indicated that metastatic ability of HCC cells could be enhanced by transferring exosomal circRNA-100,338 to recipient HUVECs, which could affect proangiogenic activity by regulating angiogenesis.

Funder

the medical-engineering cross fund of Shanghai Jiao Tong University

the pre-research fund of Shanghai sixth People’s Hospital

International Foundation of Translational Medicine for abroad Scholars and Students, U.S. and China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3