Rhenium N-heterocyclic carbene complexes block growth of aggressive cancers by inhibiting FGFR- and SRC-mediated signalling

Author:

Domenichini Alice,Casari Ilaria,Simpson Peter V.,Desai Nima Maheshkumar,Chen Lingfeng,Dustin Christopher,Edmands Jeanne S.,van der Vliet Albert,Mohammadi Moosa,Massi Massimiliano,Falasca MarcoORCID

Abstract

Abstract Background Platinum-based anticancer drugs have been at the frontline of cancer therapy for the last 40 years, and are used in more than half of all treatments for different cancer types. However, they are not universally effective, and patients often suffer severe side effects because of their lack of cellular selectivity. There is therefore a compelling need to investigate the anticancer activity of alternative metal complexes. Here we describe the potential anticancer activity of rhenium-based complexes with preclinical efficacy in different types of solid malignancies. Methods Kinase profile assay of rhenium complexes. Toxicology studies using zebrafish. Analysis of the growth of pancreatic cancer cell line-derived xenografts generated in zebrafish and in mice upon exposure to rhenium compounds. Results We describe rhenium complexes which block cancer proliferation in vitro by inhibiting the signalling cascade induced by FGFR and Src. Initially, we tested the toxicity of rhenium complexes in vivo using a zebrafish model and identified one compound that displays anticancer activity with low toxicity even in the high micromolar range. Notably, the rhenium complex has anticancer activity in very aggressive cancers such as pancreatic ductal adenocarcinoma and neuroblastoma. We demonstrate the potential efficacy of this complex via a significant reduction in cancer growth in mouse xenografts. Conclusions Our findings provide a basis for the development of rhenium-based chemotherapy agents with enhanced selectivity and limited side effects compared to standard platinum-based drugs.

Funder

Avner Pancreatic Cancer Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3