AR antagonists develop drug resistance through TOMM20 autophagic degradation-promoted transformation to neuroendocrine prostate cancer

Author:

Yin Linglong,Ye Yubing,Zou Ling,Lin Jinli,Dai Yi,Fu Yongming,Liu Youhong,Peng Yuchong,Gao Yingxue,Fu Yuxin,Qi Xuli,Deng Tanggang,Zhang Songwei,Li XiongORCID

Abstract

Abstract Background Prostate cancer(PCa) is the most commonly occurring male cancer in the USA. Abiraterone or Enzalutamide have been approved for the treatment of metastatic castration-resistant prostate cancer (CRPC). However, the treatment-emergent neuroendocrine PCa (t-NEPC) may develop, resulting in drug resistance in about 10–17% CRPC patients. The detailed mechanisms remain unclear.. Methods The expression correlation of TOMM20 and AR in PCa was determined by analyzing publicly available datasets, or by IHC staining in tumor specimens. The protein interaction of TOMM20 and AR was validated by co-immunoprecipitation or GST pull-down assay. The impact of TOMM20 depletion on drug sensitivity were elucidated by assays of cell proliferation, invasion, sphere formation, xenograft growth and intravenous metastasis. The intracellular ROS level was measured by flow cytometry, and the NEPC transdifferentiation and characteristics of cancer stem-like cells were validated by RNA-seq, RT-PCR and western blotting. Results The protein level of TOMM20 is positively correlated with AR in PCa cells and specimens. TOMM20 protein physically interacts with AR. AR antagonists induced the protein degradation of TOMM20 through autophagy-lysosomal pathway, thereby elevating the intracellular ROS level and activating PI3K/AKT signaling pathway. When TOMM20 was depleted, PCa cells underwent EMT, acquired the characteristics of cancer stem-like cells, and developed resistance to AR antagonists. The stable depletion of TOMM20 promoted the transdifferentiation of PCa adenocarcinoma into NEPC and metastasis. Conversely, the rescue of TOMM20 re-sensitized the resistant PCa cells to AR antagonists. Conclusions TOMM20 protein degradation induced by AR antagonists promoted the transdifferentiation of PCa to NEPC, thereby revealing a novel molecular mechanism by which AR antagonists develop drug resistance through mitochondrial outer membrane-mediated signaling pathway. These findings suggested that the decreasing or loss of TOMM20 expression in PCa tissues might become a useful predictor of PCa resistance to AR antagonists.

Funder

National Natural Science Foundation of China

Special Project for Research and Development in Key areas of Guangdong Province

Science and Technology Program of Guangzhou City

National Key Specialty Construction Project of Clinical Pharmacy, High Level Clinical Key Specialty of Clinical Pharmacy in Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3