Novel LncRNA OXCT1-AS1 indicates poor prognosis and contributes to tumorigenesis by regulating miR-195/CDC25A axis in glioblastoma

Author:

Zhong Chen,Yu Qian,Peng Yucong,Zhou Shengjun,Liu Zhendong,Deng Yong,Guo Leiguang,Zhao Shiguang,Chen Gao

Abstract

Abstract Background Long noncoding RNAs (lncRNAs) contribute to multiple biological processes in human glioblastoma (GBM). However, identifying a specific lncRNA target remains a challenge. In this study, bioinformatics methods and competing endogenous RNA (ceRNA) network regulatory rules were used to identify GBM-related lncRNAs and revealed that OXCT1 antisense RNA 1 (OXCT1-AS1) is a potential therapeutic target for the treatment of glioma. Methods Based on the Gene Expression Omnibus (GEO) dataset, we identified differential lncRNAs, microRNAs and mRNAs and constructed an lncRNA-associated ceRNA network. The novel lncRNA OXCT1-AS1 was proposed to function as a ceRNA, and its potential target miRNAs were predicted through the database LncBase Predicted v.2. The expression patterns of OXCT1-AS1 in glioma and normal tissue samples were measured. The effect of OXCT1-AS1 on glioma cells was checked using the Cell Counting Kit 8 assay, cell colony formation assay, Transwell assay and flow cytometry in vitro. The dual-luciferase activity assay was performed to investigate the potential mechanism of the ceRNA network. Finally, orthotopic mouse models of glioma were created to evaluate the influence of OXCT1-AS1 on tumour growth in vivo. Results In this study, it was found that the expression of lncRNA OXCT1-AS1 was upregulated in both The Cancer Genome Atlas (TCGA) GBM patients and GBM tissue samples, and high expression of OXCT1-AS1 predicted a poor prognosis. Suppressing OXCT1-AS1 expression significantly decreased GBM cell proliferation and inhibited cell migration and invasion. We further investigated the potential mechanism and found that OXCT1-AS1 may act as a ceRNA of miR-195 to enhance CDC25A expression and promote glioma cell progression. Finally, knocking down OXCT1-AS1 notably attenuated the severity of glioma in vivo. Conclusion OXCT1-AS1 inhibits glioma progression by regulating the miR-195-5p/CDC25A axis and is a specific tumour marker and a novel potential therapeutic target for glioma treatment.

Funder

China Postdoctoral Science Foundation

National Key R&D program of China

Key Research and Development Project of Zhejiang Province

TCM Key Discipline of Zhejiang province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Reference42 articles.

1. Mary D. Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs. 2016;20(5 Suppl):S2–8.

2. Brandner S, Jaunmuktane Z. Neurological update: gliomas and other primary brain tumours in adults. J Neurol. 2018;265(3):717–27. https://doi.org/10.1007/s00415-017-8652-3.

3. Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma subclassifications and their clinical significance. Neurotherapeutics. 2017;14(2):1–14.

4. Alan O, Telli TA, Tuylu TB, Arikan R, Demircan NC, Ercelep O, et al. Prognostic factors in progressive high-grade glial tumors treated with systemic approach: A single center experience. J Oncol Pharm Pract. 2020;0(0):1078155220920684.

5. Jiang HH, Lin S. Current status and prospect in the treatment of glioblastoma. Zhonghua wai ke za zhi Chinese J Surg. 2020;58(1):70–4. https://doi.org/10.3760/cma.j.issn.0529-5815.2020.01.015.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3