GABA induced by sleep deprivation promotes the proliferation and migration of colon tumors through miR-223-3p endogenous pathway and exosome pathway

Author:

Bao Haijun,Peng Zuojie,Cheng Xukai,Jian Chenxing,Li Xianguo,Shi Yongping,Zhu Wenzhong,Hu Yuan,Jiang Mi,Song Jia,Fang Feifei,Chen Jinhuang,Shu Xiaogang

Abstract

Abstract Background Research has indicated that long-term sleep deprivation can lead to immune dysfunction and participate in the occurance and progression of tumors. However, the relationship between sleep deprivation and colon cancer remains unclear. This study explored the specific mechanism through which sleep deprivation promotes the proliferation and migration of colon cancer, with a focus on the neurotransmitter GABA. Methods Chronic sleep deprivation mice model were used to investigate the effect of sleep disorder on tumors. We detected neurotransmitter levels in the peripheral blood of mice using ELISA. CCK-8 assay, colony formation assay, wound healing assay, and transwell assay were performed to investigate the effect of GABA on colon cancer cells, while immunofluorescence showed the distribution of macrophages in lung metastatic tissues. We isolated exosomes from a GABA-induced culture medium to explore the effects of GABA-induced colon cancer cells on macrophages. Gain- and loss-of-function experiments, luciferase report analysis, immunohistochemistry, and cytokine detection were performed to reveal the crosstalk between colon cancer cells and macrophages. Results Sleep deprivation promote peripheral blood GABA level and colon cancer cell proliferation and migration. Immunofluorescence analysis revealed that GABA-induced colon cancer metastasis is associated with enhanced recruitment of macrophages in the lungs. The co-culture results showed that GABA intensified M2 polarization of macrophage induced by colon cancer cells. This effect is due to the activation of the macrophage MAPK pathway by tumor-derived exosomal miR-223-3p. Furthermore, M2-like macrophages promote tumor proliferation and migration by secreting IL-17. We also identified an endogenous miR-223-3p downregulation of the E3 ligase CBLB, which enhances the stability of cMYC protein and augments colon cancer cells proliferation and migration ability. Notably, cMYC acts as a transcription factor and can also regulate the expression of miR-223-3p. Conclusion Our results suggest that sleep deprivation can promote the expression of miR-223-3p in colon cancer cells through GABA, leading to downregulation of the E3 ligase CBLB and inhibition of cMYC ubiquitination. Simultaneously, extracellular miR-223-3p promotes M2-like macrophage polarization, which leads to the secretion of IL-17, further enhancing the proliferation and migration of colon cancer cells.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3