Mir-20a-5p induced WTX deficiency promotes gastric cancer progressions through regulating PI3K/AKT signaling pathway
-
Published:2020-10-08
Issue:1
Volume:39
Page:
-
ISSN:1756-9966
-
Container-title:Journal of Experimental & Clinical Cancer Research
-
language:en
-
Short-container-title:J Exp Clin Cancer Res
Author:
Li Jian,Ye Danli,Shen Peng,Liu Xiaorong,Zhou Peirong,Zhu Guifang,Xu Yangwei,Fu Yun,Li Xuanqi,Sun Jingbo,Xu Jia,Zhang Qingling
Abstract
Abstract
Background
The X-linked gene WTX (also called AMER1) has been reported to function as a tumour suppressor gene in Wilms’ tumour. In our previous study, WTX expression was shown to be significantly reduced in gastric cancer (GC), but the function and mechanism associated with WTX loss had yet to be fully elucidated.
Methods
WTX expression and clinical significance were father analyzed in GC and control normal gastric tissues, and validated in public databases. The candidate pathway which was regulated by WTX during GC progression was searched by KEGG pathway analysis. The miRNA which monitored WTX expression was screened by miRNA microarray. After verified the pathway and miRNA both in vitro and in vivo, the relationship of miRNA, WTX and the downstream pathway were analyzed by Western blot, immunohistochemistry, RT-PCR, Co-immunoprecipitation (Co-IP), and luciferase analyses.
Results
The results showed that WTX serves as a tumour suppressor gene in GC. The loss of WTX which is associated with the aggressiveness of GC by promoting GC cell proliferation in vitro and high metastasis in vivo. Furthermore, WTX expression was positively correlated with the overall survival of GC patients. Microarray assays, bioinformatics analysis, and verification experiments showed that WTX loss activates the PI3K/AKT/mTOR pathway and promotes GC cell proliferation and invasion. And the aberrant miR-20a-5p upregulation contributes to WTX loss in GC, which stimulates PI3K phosphorylation to activate PI3K/AKT/mTOR signaling pathway and promoted GC progression.
Conclusions
The results of the present study elucidated the mechanism of GC progression, which is at least partially caused by aberrant miR-20a-5p upregulation leading to the inhibition of WTX expression and PI3K/AKT/mTOR signaling pathway activation. These findings provide a comprehensive understanding of the action of the miR-20a-5p/WTX/PI3K/AKT/mTOR signaling pathway in the progression and metastasis of GC.
Funder
National Natural Science Foundation of China Natural Science Foundation of Guangdong Province Guanzhou Science & Technology Project Key Project of Clinical Research of Southern Medical University Leo and Julia Forchheimer Foundation Postdoc Fellowship
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology
Reference50 articles.
1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32. 2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108. 3. Yang W, Raufi A, Klempner SJ. Targeted therapy for gastric cancer: molecular pathways and ongoing investigations. Biochim Biophys Acta. 1846;2014:232–7. 4. Rivera MN, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, Kim JC, Feinberg AP, Gerald WL, Vargas SO, Chin L, Iafrate AJ, Bell DW, Haber DA. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007;315:642–5. 5. Perotti D, Gamba B, Sardella M, Spreafico F, Terenziani M, Collini P, Pession A, Nantron M, Fossati-Bellani F, Radice P. Functional inactivation of the WTX gene is not a frequent event in Wilms’ tumors. Oncogene. 2008;27:4625–32.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|