Author:
Zhou Boxuan,Mo Zhaohong,Lai Guie,Chen Xiaohong,Li Ruixi,Wu Runxin,Zhu Jia,Zheng Fang
Abstract
Abstract
Background
Circular RNAs (circRNAs) have important regulatory functions in cancer, but the role of circRNAs in the tumor microenvironment (TME) remains unclear. Moreover, we also explore the effects of si-circRNAs loaded in nanoparticles as therapeutic agent for anti-tumor in vivo.
Methods
We conducted bioinformatics analysis, qRT-PCR, EdU assays, Transwell assays, co-culture system and multiple orthotopic xenograft models to investigate the expression and function of circRNAs. Additionally, PLGA-based nanoparticles loaded with si-circRNAs were used to evaluate the potential of nanotherapeutic strategy in anti-tumor response.
Results
We identified oncogene SERPINE2 derived circRNA, named as cSERPINE2, which was notably elevated in breast cancer and was closely related to poor clinical outcome. Functionally, tumor exosomal cSERPINE2 was shuttled to tumor associated macrophages (TAMs) and enhanced the secretion of Interleukin-6 (IL-6), leading to increased proliferation and invasion of breast cancer cells. Furthermore, IL-6 in turn increased the EIF4A3 and CCL2 levels within tumor cells in a positive feedback mechanism, further enhancing tumor cSERPINE2 biogenesis and promoting the recruitment of TAMs. More importantly, we developed a PLGA-based nanoparticle loaded with si-cSERPINE2, which effectively attenuated breast cancer progression in vivo.
Conclusions
Our study illustrates a novel mechanism that tumor exosomal cSERPINE2 mediates a positive feedback loop between tumor cells and TAMs to promote cancer progression, which may serve as a promising nanotherapeutic strategy for the treatment of breast cancer.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献