FMRP ligand circZNF609 destabilizes RAC1 mRNA to reduce metastasis in acral melanoma and cutaneous melanoma

Author:

Shang Qingfeng,Du Haizhen,Wu Xiaowen,Guo Qian,Zhang Fenghao,Gong Ziqi,Jiao Tao,Guo Jun,Kong Yan

Abstract

Abstract Background Melanoma is a type of malignant tumor with high aggressiveness and poor prognosis. At present, metastasis of melanoma is still an important cause of death in melanoma patients. However, the potential functions and molecular mechanisms of most circular RNAs (circRNAs) in melanoma metastasis remain unknown. Methods circRNAs dysregulated in melanoma cell subgroups with different metastatic abilities according to a screening model based on repeated Transwell assays were identified with a circRNA array. The expression and prognostic significance of circZNF609 in skin cutaneous melanoma and acral melanoma cells and tissues were determined by qRT–PCR, nucleoplasmic separation assays and fluorescence in situ hybridization. In vitro wound healing, Transwell and 3D invasion assays were used to analyse melanoma cell metastasis ability. Tail vein injection and intrasplenic injection were used to study in vivo lung metastasis and liver metastasis, respectively. The mechanism of circZNF609 was further evaluated via RNA immunoprecipitation, RNA pull-down, silver staining, and immunofluorescence colocalization assays. Results circZNF609 was stably expressed at low levels in melanoma tissues and cells and was negatively correlated with Breslow depth, clinical stage and prognosis of melanoma patients. circZNF609 inhibited metastasis of acral and cutaneous melanoma in vivo and in vitro. Mechanistically, circZNF609 promoted the binding of FMRP protein and RAC1 mRNA, thereby enhancing the inhibitory effect of FMRP protein on the stability of RAC1 mRNA and ultimately inhibiting melanoma metastasis. Conclusions Our findings revealed that circZNF609 plays a vital role in the metastasis of acral and cutaneous melanoma through the circRNF609-FMRP-RAC1 axis and indicated that circZNF609 regulates the stability of RAC1 mRNA by combining with FMRP, which might provide insight into melanoma pathogenesis and a new potential target for treatment of melanoma.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

National Key R&D Program of China

Beijing Municipal Science and Technology Commission

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3