Author:
Si Jiahui,Ma Yuanyuan,Bi Ji Wang,Xiong Ying,Lv Chao,Li Shaolei,Wu Nan,Yang Yue
Abstract
Abstract
Background
Although EGFR tyrosine kinase inhibitors (EGFR-TKIs) are beneficial to lung adenocarcinoma patients with sensitive EGFR mutations, resistance to these inhibitors induces a cancer stem cell (CSC) phenotype. Here, we clarify the function and molecular mechanism of shisa3 as a suppressor that can reverse EGFR-TKI resistance and inhibit CSC properties.
Methods
The suppresser genes involved in EGFR-TKI resistance were identified and validated by transcriptome sequencing, quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Biological function analyses, cell half maximal inhibitory concentration (IC50), self-renewal, and migration and invasion capacities, were detected by CCK8, sphere formation and Transwell assays. Tumorigenesis and therapeutic effects were investigated in nonobese diabetic/severe combined immunodeficiency (nod-scid) mice. The underlying mechanisms were explored by Western blot and immunoprecipitation analyses.
Results
We found that low expression of shisa3 was related to EGFR-TKI resistance in lung adenocarcinoma patients. Ectopic overexpression of shisa3 inhibited CSC properties and the cell cycle in the lung adenocarcinoma cells resistant to gefitinib/osimertinib. In contrast, suppression of shisa3 promoted CSC phenotypes and the cell cycle in the cells sensitive to EGFR-TKIs. For TKI-resistant PC9/ER tumors in nod-scid mice, overexpressed shisa3 had a significant inhibitory effect. In addition, we verified that shisa3 inhibited EGFR-TKI resistance by interacting with FGFR1/3 to regulate AKT/mTOR signaling. Furthermore, combinational administration of inhibitors of FGFR/AKT/mTOR and cell cycle signaling could overcome EGFR-TKI resistance associated with shisa3-mediated CSC capacities in vivo.
Conclusion
Taken together, shisa3 was identified as a brake to EGFR-TKI resistance and CSC characteristics, probably through the FGFR/AKT/mTOR and cell cycle pathways, indicating that shisa3 and concomitant inhibition of its regulated signaling may be a promising therapeutic strategy for reversing EGFR-TKI resistance.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Beijing Natural Science Foundation
Natural Science Foundation of Tianjin Municipal Science and Technology Commission
Special Fund of Beijing Municipal Administration of Hospitals Clinical Medicine Development
Publisher
Springer Science and Business Media LLC