Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent Axis

Author:

Wu Hong,Wang Tao,Liu Yiqiang,Li Xin,Xu Senlin,Wu Changtao,Zou Hongbo,Cao Mianfu,Jin Guoxiang,Lang Jinyi,Wang Bin,Liu Baohua,Luo Xiaolin,Xu Chuan

Abstract

Abstract Background The identification of novel targets for recovering sorafenib resistance is pivotal for Hepatocellular carcinoma (HCC) patients. Mitophagy is the programmed degradation of mitochondria, and is likely involved in drug resistance of cancer cells. Here, we identified hyperactivated mitophagy is essential for sorafenib resistance, and the mitophagy core regulator gene ATAD3A (ATPase family AAA domain containing 3A) was down regulated in hypoxia induced resistant HCC cells. Blocking mitophagy may restore the sorafenib sensitivity of these cells and provide a new treatment strategy for HCC patients. Methods Hypoxia induced sorafenib resistant cancer cells were established by culturing under 1% O2 with increasing drug treatment. RNA sequencing was conducted in transfecting LM3 cells with sh-ATAD3A lentivirus. Subsequent mechanistic studies were performed in HCC cell lines by manipulating ATAD3A expression isogenically where we evaluated drug sensitivity, molecular signaling events. In vivo study, we investigated the combined treatment effect of sorafenib and miR-210-5P antagomir. Results We found a hyperactivated mitophagy regulating by ATAD3A-PINK1/PARKIN axis in hypoxia induced sorafenib resistant HCC cells. Gain- and loss- of ATAD3A were related to hypoxia-induced mitophagy and sorafenib resistance. In addition, ATAD3A is a functional target of miR-210-5p and its oncogenic functions are likely mediated by increased miR-210-5P expression. miR-210-5P was upregulated under hypoxia and participated in regulating sorafenib resistance. In vivo xenograft assay showed that miR-210-5P antagomir combined with sorafenib abrogated the tumorigenic effect of ATAD3A down-regulation in mice. Conclusions Loss of ATAD3A hyperactivates mitophagy which is a core event in hypoxia induced sorafenib resistance in HCC cells. Targeting miR-210-5P-ATAD3A axis is a novel therapeutic target for sorafenib-resistant HCC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Reference53 articles.

1. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176(1–2):11–42.

2. Sorrentino V, Menzies KJ, Auwerx J. Repairing mitochondrial dysfunction in disease. Annu Rev Pharmacol Toxicol. 2018;58:353–89.

3. Wu Q, Luo CL, Tao LY. Dynamin-related protein 1 (Drp1) mediating mitophagy contributes to the pathophysiology of nervous system diseases and brain injury. Histol Histopathol. 2017;32(6):551–9.

4. Fukuda T, Kanki T. Mechanisms and physiological roles of Mitophagy in yeast. Mol Cells. 2018;41(1):35–44.

5. Yang X, Pan W, Xu G, Chen L. Mitophagy: a crucial modulator in the pathogenesis of chronic diseases. Clin Chim Acta. 2020;502:245–54.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3