CircZNF215 promotes tumor growth and metastasis through inactivation of the PTEN/AKT pathway in intrahepatic cholangiocarcinoma

Author:

Liao Wenwei,Du Jinpeng,Li Lian,Wu Xianquan,Chen Xing,Feng Qingbo,Xu Lin,Chen Xiangzheng,Liao Mingheng,Huang Jiwei,Yuan Kefei,Zeng YongORCID

Abstract

AbstractBackgroundIncreasing evidence shows that circular RNAs (circRNAs), a novel class of noncoding RNAs, play a crucial role in the development of cancers, including intrahepatic cholangiocarcinoma (iCCA). Nevertheless, their functions and exact mechanisms in iCCA progression and metastasis are still unclear. Ipatasertib is a highly selective inhibitor of AKT that inhibits tumor growth by blocking the PI3K/AKT pathway. In addition, phosphatase and tensin homolog (PTEN) can also inhibit the activation of the PI3K/AKT pathway, but it is not clear whether the cZNF215-PRDX-PTEN axis plays a role in the antitumor activity of ipatasertib.MethodsWe identified a new circRNA (circZNF215, termed cZNF215) through high-throughput circRNA sequencing (circRNA-seq). In addition, RT‒qPCR, immunoblot assay, RNA pull-down assay, RNA immunoprecipitation (RIP) assay, and fluorescence in situ hybridization assay (FISH) were used to investigate the interaction of cZNF215 with peroxiredoxin 1 (PRDX1). Coimmunoprecipitation (Co-IP) assays and duolink in situ proximity ligation assays (PLAs) were conducted to analyze the effects of cZNF215 on the interaction between PRDX1 and PTEN. Finally, we tested the potential effects of cZNF215 on the antitumor activity of ipatasertib within vivoexperiments.ResultsWe found that cZNF215 expression was obviously upregulated in iCCA tissues with postoperative metastases and was correlated with iCCA metastasis and poor outcome in patients with iCCA. We further revealed that overexpression of cZNF215 promoted iCCA cell growth and metastasis in vitro and in vivo, while cZNF215 knockdown had the opposite effect. Mechanistic studies suggested that cZNF215 competitively interacted with PRDX1, which blocked the association between PRDX1 and PTEN, subsequently leading to oxidation-induced inactivation of the PTEN/AKT pathway and finally contributing to iCCA progression and metastasis. Additionally, we also revealed that silencing cZNF215 in iCCA cells had the potential to enhance the antitumor effect of ipatasertib.ConclusionsOur study demonstrates that cZNF215 facilitates iCCA progression and metastasis by regulating the PTEN/AKT pathway and may serve as a novel prognostic predictor in patients with iCCA.

Funder

the Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3