Anaplastic thyroid cancer spheroids as preclinical models to test therapeutics

Author:

Hu JiangnanORCID,Liu Kaili,Ghosh Chandrayee,Khaket Tejinder Pal,Shih Helen,Kebebew Electron

Abstract

AbstractAnaplastic thyroid cancer (ATC) is the most aggressive thyroid cancer. Despite advances in tissue culture techniques, a robust model for ATC spheroid culture is yet to be developed. In this study, we created an efficient and cost-effective 3D tumor spheroids culture system from human ATC cells and existing cell lines that better mimic patient tumors and that can enhance our understanding of in vivo treatment response. We found that patient-derived ATC cells and cell lines can readily form spheroids in culture with a unique morphology, size, and cytoskeletal organization. We observed both cohesive (dense and solid structures) and discohesive (irregularly shaped structures) spheroids within the same culture condition across different cell lines. BRAFWT ATC spheroids grew in a cohesive pattern, while BRAFV600E-mutant ATC spheroids had a discohesive organization. In the patient-derived BRAFV600E-mutant ATC spheroids, we observed both growth patterns, but mostly the discohesive type. Histologically, ATC spheroids had a similar morphology to the patient’s tumor through H&E staining and proliferation marker staining. Moreover, RNA sequencing analysis revealed that the gene expression profile of tumor cells derived from the spheroids closely matched parental patient tumor-derived cells in comparison to monolayer cultures. In addition, treatment response to combined BRAF and MEK inhibition in BRAFV600E-mutant ATC spheroids exhibited a similar sensitivity to the patient clinical response. Our study provides a robust and novel ex vivo spheroid model system that can be used in both established ATC cell lines and patient-derived tumor samples to better understand the biology of ATC and to test therapeutics.

Funder

Stanford Medicine Harry A. Oberhelman Jr. and Mark L. Welton Endowment

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3