Overexpressed integrin alpha 2 inhibits the activation of the transforming growth factor β pathway in pancreatic cancer via the TFCP2-SMAD2 axis

Author:

Cai Hongkun,Guo Feng,Wen Shuang,Jin Xin,Wu Heshui,Ren Dianyun

Abstract

AbstractBackgroundIntegrin alpha 2 (ITGA2) has been recently reported to be an oncogene and to play crucial roles in tumor cell proliferation, invasion, metastasis, and angiogenesis. Our previous study showed that ITGA2 was overexpressed in pancreatic cancer and promoted its progression. However, the mechanism of ITGA2 overexpression and other mechanisms for promoting the progression of pancreatic cancer are still unclear.MethodsThe GEPIA database was used to confirm the expression of ITGA2 in pancreatic cancer. To verify the influence of ITGA2 and TGF-β on the morphological changes of pancreatic cancer and tumor cell progression, we conduct CCK8 test, plate cloning, flow cytometry experiments and animal experiments. Then we conduct Western blot, RT-qPCR to explore the relationship between ITGA2 and TGF-β, and then find the key molecules which can regulate them by immunoprecipitation, Western blot, RT-qPCR, CHIP, nuclear and cytoplasmic separation test.ResultsThe results of the present study show that the abnormal activation of KRAS induced the overexpression of ITGA2 in pancreatic cancer. Moreover, ITGA2 expression significantly suppressed the activation of the TGF-β pathway. ITGA2 silencing enhanced the anti-pancreatic cancer proliferation and tumor growth effects of TGF-β. Mechanistically, ITGA2 expression suppressed the activation of the TGF-β pathway by inhibiting the SMAD2 expression transcriptionally. In addition, it interacted with and inhibited the nuclear translocation of TFCP2, which induced the SMAD2 expression as a transcription factor. Furthermore, TFCP2 also induced ITGA2 expression as a transcription factor, and the TFCP2 feedback regulated the ITGA2-TFCP2-SMAD2 pathway.ConclusionsTaken together, these results indicated that ITGA2 expression could inhibit the activation of the TGF-β signaling pathway in pancreatic cancer via the TFCP2-SMAD2 axis. Therefore, ITGA2, by effectively enhancing the anti-cancer effects of TGF- β, might be a potential clinical therapeutic target for pancreatic cancer.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3