SOCS7/HuR/FOXM1 signaling axis inhibited high-grade serous ovarian carcinoma progression

Author:

Du Yanhua,Xu Xiang,Lv Siang,Liu Han,Sun Hong,Wu Jun

Abstract

Abstract Background High-grade serous ovarian carcinoma (HGSOC) is clinically dominant and accounts for ~ 80% deaths in all types of ovarian cancer. The delayed diagnosis, rapid development, and wide dissemination of HGSOC collectively contribute to its high mortality rate and poor prognosis in the patients. Suppressors of cytokine signaling 7 (SOCS7) can regulate cytokine signaling and participate in cell cycle arrest and regulation of cell proliferation, which might also be involved in carcinogenesis. Here, we designated to investigate the functions and mechanisms of SOCS7 in HGSOC. Methods The clinical correlation between SOCS7 and HGSOC was examined by both bioinformatics and analysis of tissue samples in patients. Gain/Loss-of-function examinations were carried out to assess the effectiveness of SOCS7 in cell viability, cell cycle, and tumor growth of HGSOC. Furthermore, the underlying mechanisms were explored by identifying the downstream proteins and their interactions via proteomics analysis and immunoprecipitation. Results The expression of SOCS7, which was decreased in HGSOC tissues, was correlated with the clinical pathologic characteristics and overall survival of HGSOC patients. SOCS7 acted as a HGSOC suppressor by inhibiting cancer cell viability and tumor growth in vivo. The anti-HGSOC mechanism involves SOCS7’s regulatory effect on HuR by mediating its ubiquitination, the regulation of FOXM1 mRNA by HuR, as well as the interplays among these three clinically relevant factors. Conclusions The SOCS7 correlates with HGSOC and suppresses its tumorigenesis through regulating HuR and FOXM1, which also suggests that SOCS7 is a prospective biomarker for the clinical management of ovarian cancer, especially HGSOC.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Key Discipline Project of Shanghai Jiading District

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3