Inhibiting interferon-γ induced cancer intrinsic TNFRSF14 elevation restrains the malignant progression of glioblastoma

Author:

Han Yunhe,Zou Cunyi,Liu Tianqi,Cheng Wen,Cheng Peng,Wu AnhuaORCID

Abstract

Abstract Background Prolonged interferon-γ signaling activation induces cancer resistance to therapeutics, especially immunotherapy. However, the detailed mechanisms are not well characterized. In present study, we explored cancer intrinsic resistant mechanisms employing for evading immune checkpoint blockade (ICB) and searched for key immune checkpoints contributing to the constitution of suppressive immune microenvironment of glioblastoma (GBM). Methods We screened key immune checkpoint (IC) associated with IFN signaling activation in GBM according to integrated transcriptomic profiling on the ICs. Expression analysis and functional assays revealed that malignant cells elevated the key IC, TNFRSF14 expression under IFN-γ stimulation, which enhanced their proliferation and in vivo tumorigenicity. Therapeutic efficiency of TNFRSF14 disruption in GBM was evaluated with in vitro and in vivo functional assays, including immunofluorescence, transwell, RT-qPCR, flow cytometry, mass cytometry, and mice preclinical GBM models. Moreover, the improvement of TNFRSF14 blockade on the efficacy of PD-L1 treatment was examined in mice intracranial xenograft bearing models. Results TNFRSF14, a previously poorly characterized IC, was disclosed as a checkpoint with malignant intrinsic elevation closely associated with type II not type I IFN signaling activation in GBM. Anti-PD-L1 treatment induces compensatory TNFRSF14 elevation, while enhancing IFN-γ production. TNFRSF14 phosphorylates FAK at Y397 and consequently activates NF-κB, which not only strengthens the tumorigenicity of GBM cells, but also enhances TAMs recruitment through elevating CXCL1/CXCL5 secretion from GBM cells. TNFRSF14 ablation reduces the tumorigenicity of GBM cells, reshapes the immunosuppressive microenvironment, and enhances therapeutic efficacy of anti-PD-L1 in mouse orthotopic GBM model. Conclusion Our findings highlight a malignant TNFRSF14/FAK axis as a potential target to blunt cancer-intrinsic resistance to ICB treatment, which may help improve the therapeutic efficiency of immunotherapy in malignancies.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Liaoning Province

Natural Science Foundation of Liaoning Province

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3