Author:
Yang Bingsheng,Li Lutao,Tong Ge,Zeng Zhirui,Tan Jianye,Su Zexin,Liu Zhengwei,Lin Jiezhao,Gao Wenwen,Chen Jianping,Zeng Sisi,Wu Guofeng,Li Lin,Zhu Shuang,Liu Qiuzhen,Lin Lijun
Abstract
Abstract
Background
Circular RNAs (circRNAs) are involved in diverse processes that drive cancer development. However, the expression landscape and mechanistic function of circRNAs in osteosarcoma (OS) remain to be studied.
Methods
Bioinformatic analysis and high-throughput RNA sequencing tools were employed to identify differentially expressed circRNAs between OS and adjacent noncancerous tissues. The expression level of circ_001422 in clinical specimens and cell lines was measured using qRT-PCR. The association of circ_001422 expression with the clinicopathologic features of 55 recruited patients with OS was analyzed. Loss- and gain-of-function experiments were conducted to explore the role of circ_001422 in OS cells. RNA immunoprecipitation, fluorescence in situ hybridization, bioinformatics database analysis, RNA pulldown assays, dual-luciferase reporter assays, mRNA sequencing, and rescue experiments were conducted to decipher the competitive endogenous RNA regulatory network controlled by circ_001422.
Results
We characterized a novel and abundant circRNA, circ_001422, that promoted OS progression. Circ_001422 expression was dramatically increased in OS cell lines and tissues compared with noncancerous samples. Higher circ_001422 expression correlated with more advanced clinical stage, larger tumor size, higher incidence of distant metastases and poorer overall survival in OS patients. Circ_001422 knockdown markedly repressed the proliferation and metastasis and promoted the apoptosis of OS cells in vivo and in vitro, whereas circ_001422 overexpression exerted the opposite effects. Mechanistically, competitive interactions between circ_001422 and miR-195-5p elevated FGF2 expression while also initiating PI3K/Akt signaling. These events enhanced the malignant characteristics of OS cells.
Conclusions
Circ_001422 accelerates OS tumorigenesis and metastasis by modulating the miR-195-5p/FGF2/PI3K/Akt axis, implying that circ_001422 can be therapeutically targeted to treat OS.
Funder
Science and Technology Program of Guangzhou
Publisher
Springer Science and Business Media LLC
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献