Utility of a novel lipoarabinomannan assay for the diagnosis of tuberculous meningitis in a resource-poor high-HIV prevalence setting

Author:

Patel Vinod B,Bhigjee Ahmed I,Paruk Hoosain F,Singh Ravesh,Meldau Richard,Connolly Cathy,Ndung'u Thumbi,Dheda Keertan

Abstract

Abstract Background In Africa, tuberculous meningitis (TBM) is an important opportunistic infection in HIV-positive patients. Current diagnostic tools for TBM perform sub-optimally. In particular, the rapid diagnosis of TBM is challenging because smear microscopy has a low yield and PCR is not widely available in resource-poor settings. Methods We evaluated the performance outcome of a novel standardized lipoarabinomannan (LAM) antigen-detection assay, using archived cerebrospinal fluid samples, in 50 African TBM suspects of whom 68% were HIV-positive. Results Of the 50 participants 14, 23 and 13 patients had definite, probable and non-TBM, respectively. In the non-TB group there were 5 HIV positive patients who were lost to follow-up and in whom concomitant infection with Mycobacterium tuberculosis could not be definitively excluded. The test sensitivities and specificities were as follows: LAM assay 64% and 69% (cut-point 0.22), smear microscopy 0% and 100% and PCR 93% and 77%, respectively. Conclusion In this preliminary proof-of-concept study, a rapid diagnosis of TBM could be achieved using LAM antigen detection. Although specificity was sub-optimal, the estimates provided here may be unreliable because of a classification bias inherent in the study design where it was not possible to exclude TBM in the presumed non-TBM cases owing to a lack of clinical follow-up. As PCR is largely unavailable, the LAM assay may well prove to be a useful adjunct for the rapid diagnosis of TBM in high HIV-incidence settings. These preliminary results justify further enquiry and prospective studies are now required to definitively establish the place of this technology for the diagnosis of TBM.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3