Prostaglandin E2metabolism in rat brain: Role of the blood-brain interfaces

Author:

Alix Eudeline,Schmitt Charlotte,Strazielle Nathalie,Ghersi-Egea Jean-François

Abstract

Abstract Background Prostaglandin E2 (PGE2) is involved in the regulation of synaptic activity and plasticity, and in brain maturation. It is also an important mediator of the central response to inflammatory challenges. The aim of this study was to evaluate the ability of the tissues forming the blood-brain interfaces to act as signal termination sites for PGE2 by metabolic inactivation. Methods The specific activity of 15-hydroxyprostaglandin dehydrogenase was measured in homogenates of microvessels, choroid plexuses and cerebral cortex isolated from postnatal and adult rat brain, and compared to the activity measured in peripheral organs which are established signal termination sites for prostaglandins. PGE2 metabolites produced ex vivo by choroid plexuses were identified and quantified by HPLC coupled to radiochemical detection. Results The data confirmed the absence of metabolic activity in brain parenchyma, and showed that no detectable activity was associated with brain microvessels forming the blood-brain barrier. By contrast, 15-hydroxyprostaglandin dehydrogenase activity was measured in both fourth and lateral ventricle choroid plexuses from 2-day-old rats, albeit at a lower level than in lung or kidney. The activity was barely detectable in adult choroidal tissue. Metabolic profiles indicated that isolated choroid plexus has the ability to metabolize PGE2, mainly into 13,14-dihydro-15-keto-PGE2. In short-term incubations, this metabolite distributed in the tissue rather than in the external medium, suggesting its release in the choroidal stroma. Conclusion The rat choroidal tissue has a significant ability to metabolize PGE2 during early postnatal life. This metabolic activity may participate in signal termination of centrally released PGE2 in the brain, or function as an enzymatic barrier acting to maintain PGE2 homeostasis in CSF during the critical early postnatal period of brain development.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3