Genome-scale data resolve ancestral rock-inhabiting lifestyle in Dothideomycetes (Ascomycota)

Author:

Ametrano Claudio G.,Grewe Felix,Crous Pedro W.,Goodwin Stephen B.,Liang Chen,Selbmann Laura,Lumbsch H. Thorsten,Leavitt Steven D.,Muggia LuciaORCID

Abstract

Abstract Dothideomycetes is the most diverse fungal class in Ascomycota and includes species with a wide range of lifestyles. Previous multilocus studies have investigated the taxonomic and evolutionary relationships of these taxa but often failed to resolve early diverging nodes and frequently generated inconsistent placements of some clades. Here, we use a phylogenomic approach to resolve relationships in Dothideomycetes, focusing on two genera of melanized, extremotolerant rock-inhabiting fungi, Lichenothelia and Saxomyces, that have been suggested to be early diverging lineages. We assembled phylogenomic datasets from newly sequenced (4) and previously available genomes (238) of 242 taxa. We explored the influence of tree inference methods, supermatrix vs. coalescent-based species tree, and the impact of varying amounts of genomic data. Overall, our phylogenetic reconstructions provide consistent and well-supported topologies for Dothideomycetes, recovering Lichenothelia and Saxomyces among the earliest diverging lineages in the class. In addition, many of the major lineages within Dothideomycetes are recovered as monophyletic, and the phylogenomic approach implemented strongly supports their relationships. Ancestral character state reconstruction suggest that the rock-inhabiting lifestyle is ancestral within the class.

Funder

Università degli Studi di Trieste

Grainger Bioinformatics Center

Negaunee Foundation

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3