Targeted sequencing analysis pipeline for species identification of human pathogenic fungi using long-read nanopore sequencing

Author:

Langsiri Nattapong,Worasilchai Navaporn,Irinyi Laszlo,Jenjaroenpun Piroon,Wongsurawat Thidathip,Luangsa-ard Janet Jennifer,Meyer Wieland,Chindamporn AriyaORCID

Abstract

AbstractAmong molecular-based techniques for fungal identification, Sanger sequencing of the primary universal fungal DNA barcode, the internal transcribed spacer (ITS) region (ITS1, 5.8S, ITS2), is commonly used in clinical routine laboratories due to its simplicity, universality, efficacy, and affordability for fungal species identification. However, Sanger sequencing fails to identify mixed ITS sequences in the case of mixed infections. To overcome this limitation, different high-throughput sequencing technologies have been explored. The nanopore-based technology is now one of the most promising long-read sequencing technologies on the market as it has the potential to sequence the full-length ITS region in a single read. In this study, we established a workflow for species identification using the sequences of the entire ITS region generated by nanopore sequencing of both pure yeast isolates and mocked mixed species reads generated with different scenarios. The species used in this study included Candida albicans (n = 2), Candida tropicalis (n = 1), Nakaseomyces glabratus (formerly Candida glabrata) (n = 1), Trichosporon asahii (n = 2), Pichia kudriavzevii (formerly Candida krusei) (n = 1), and Cryptococcus neoformans (n = 1). Comparing various methods to generate the consensus sequence for fungal species identification, the results from this study indicate that read clustering using a modified version of the NanoCLUST pipeline is more sensitive than Canu or VSEARCH, as it classified species accurately with a lower abundance cluster of reads (3% abundance compared to 10% with VSEARCH). The modified NanoCLUST also reduced the number of classified clusters compared to VSEARCH, making the subsequent BLAST+ analysis faster. Subsampling of the datasets, which reduces the size of the datasets by approximately tenfold, did not significantly affect the identification results in terms of the identified species name, percent identity, query coverage, percentage of reads in the classified cluster, and the number of clusters. The ability of the method to distinguish mixed species within sub-populations of large datasets has the potential to aid computer analysis by reducing the required processing power. The herein presented new sequence analysis pipeline will facilitate better interpretation of fungal sequence data for species identification.

Funder

National Research Council of Thailand

Matching fund, Rachadapisek Sompoch

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3