Ophiostomatoid fungi associated with mites phoretic on bark beetles in Qinghai, China

Author:

Chang Runlei,Duong Tuan A.,Taerum Stephen J.,Wingfield Michael J.,Zhou XuDong,de Beer Z. WilhelmORCID

Abstract

AbstractBark beetle galleries are complex ecosystems where many microbes and other arthropods co-exist with the beetles. Fungi isolated from these galleries are often referred to as ‘beetle associates’, but the nature of these associations are poorly understood. The possibility that many of these fungi might in fact be mite associates is often overlooked. Several recent studies explored the diversity of fungi from conifer-infesting bark beetles and their galleries in China, but only one study considered phoretic mites and their fungi from conifer-infesting bark beetles in Yunnan, southwestern China. We studied the mites and fungi from galleries of four spruce-infesting bark beetle species in the high altitude forests of Qinghai province, western China. Mites were identified based on morphological characteristics, and fungi based on DNA sequences of four gene regions. In total, 173 mite individuals were collected belonging to 18 species in 11 genera. A total of 135 fungal isolates were obtained from the mites, representing 14 taxa from the Ophiostomatales. The most frequently isolated fungus was Ophiostoma nitidum, which represented 23.5% of the total isolates. More fungal species were found from fewer mites and bark beetle species than from the study in Yunnan. Although we could not elucidate the exact nature of interactions between mites and their fungi, our results re-enforce that these organisms should not be ignored in pest risk assessments of bark beetles, that often focus only on the beetles and their fungi. Three new species are described: Grosmannia zekuensis, O. manchongi, and O. kunlunense spp. nov., and our data revealed that O. typographi, recently described from China, is a synonym of O. ainoae.

Publisher

Springer Science and Business Media LLC

Subject

Agricultural and Biological Sciences (miscellaneous),Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3