Author:
Rousseau Céline,Belin Etienne,Bove Edouard,Rousseau David,Fabre Frédéric,Berruyer Romain,Guillaumès Jacky,Manceau Charles,Jacques Marie-Agnès,Boureau Tristan
Abstract
Abstract
Background
In order to select for quantitative plant resistance to pathogens, high throughput approaches that can precisely quantify disease severity are needed. Automation and use of calibrated image analysis should provide more accurate, objective and faster analyses than visual assessments. In contrast to conventional visible imaging, chlorophyll fluorescence imaging is not sensitive to environmental light variations and provides single-channel images prone to a segmentation analysis by simple thresholding approaches. Among the various parameters used in chlorophyll fluorescence imaging, the maximum quantum yield of photosystem II photochemistry (Fv/Fm) is well adapted to phenotyping disease severity. Fv/Fm is an indicator of plant stress that displays a robust contrast between infected and healthy tissues. In the present paper, we aimed at the segmentation of Fv/Fm images to quantify disease severity.
Results
Based on the Fv/Fm values of each pixel of the image, a thresholding approach was developed to delimit diseased areas. A first step consisted in setting up thresholds to reproduce visual observations by trained raters of symptoms caused by Xanthomonas fuscans subsp. fuscans (Xff) CFBP4834-R on Phaseolus vulgaris cv. Flavert. In order to develop a thresholding approach valuable on any cultivars or species, a second step was based on modeling pixel-wise Fv/Fm-distributions as mixtures of Gaussian distributions. Such a modeling may discriminate various stages of the symptom development but over-weights artifacts that can occur on mock-inoculated samples. Therefore, we developed a thresholding approach based on the probability of misclassification of a healthy pixel. Then, a clustering step is performed on the diseased areas to discriminate between various stages of alteration of plant tissues. Notably, the use of chlorophyll fluorescence imaging could detect pre-symptomatic area. The interest of this image analysis procedure for assessing the levels of quantitative resistance is illustrated with the quantitation of disease severity on five commercial varieties of bean inoculated with Xff CFBP4834-R.
Conclusions
In this paper, we describe an image analysis procedure for quantifying the leaf area impacted by the pathogen. In a perspective of high throughput phenotyping, the procedure was automated with the software R downloadable at http://www.r-project.org/. The R script is available at http://lisa.univ-angers.fr/PHENOTIC/telechargements.html.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Reference58 articles.
1. Brun H, Chèvre A-M, Fitt BDL, Powers S, Besnard A-L, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D: Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol. 2010, 185: 285-299. 10.1111/j.1469-8137.2009.03049.x.
2. Palloix A, Ayme V, Moury B: Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol. 2009, 183: 190-199. 10.1111/j.1469-8137.2009.02827.x.
3. Quenouille J, Montarry J, Palloix A, Moury B: Farther, slower, stronger: how the plant genetic background protects a major resistance gene from breakdown. Mol Plant Pathol. 2013, 14: 109-118. 10.1111/j.1364-3703.2012.00834.x.
4. Poland JA, Nelson RJ: In the eye of the beholder: the effect of rater variability and different rating scales on QTL mapping. Phytopathology. 2011, 101: 290-298. 10.1094/PHYTO-03-10-0087.
5. Bock CH, Parker PE, Cook AZ, Gottwald TR: Visual rating and the Use of image analysis for assessing different symptoms of citrus canker on grapefruit leaves. Plant Disease. 2001, 92: 412-424.
Cited by
139 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献