Author:
Kölling Katharina,Müller Antonia,Flütsch Patrick,Zeeman Samuel C
Abstract
Abstract
Background
Plant biomass consists primarily of carbohydrates derived from photosynthesis. Monitoring the assimilation of carbon via the Calvin-Benson cycle and its subsequent utilisation is fundamental to understanding plant growth. The use of stable and radioactive carbon isotopes, supplied to plants as CO2, allows the measurement of fluxes through the intermediates of primary photosynthetic metabolism, long-distance transport of sugars in the vasculature, and the synthesis of structural and storage components.
Results
Here we describe the design of a system for supplying isotopically labelled CO2 to single leaves of Arabidopsis thaliana. We demonstrate that the system works well using short pulses of 14CO2 and that it can be used to produce robust qualitative and quantitative data about carbon export from source leaves to the sink tissues, such as the developing leaves and the roots. Time course experiments show the dynamics of carbon partitioning between storage as starch, local production of biomass, and export of carbon to sink tissues.
Conclusion
This isotope labelling method is relatively simple to establish and inexpensive to perform. Our use of 14CO2 helps establish the temporal and spatial allocation of assimilated carbon during plant growth, delivering data complementary to those obtained in recent studies using 13CO2 and MS-based metabolomics techniques. However, we emphasise that this labelling device could also be used effectively in combination with 13CO2 and MS-based techniques.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献