A rapid and robust assay for detection of S-phase cell cycle progression in plant cells and tissues by using ethynyl deoxyuridine

Author:

Kotogány Edit,Dudits Dénes,Horváth Gábor V,Ayaydin Ferhan

Abstract

Abstract Background Progress in plant cell cycle research is highly dependent on reliable methods for detection of cells replicating DNA. Frequency of S-phase cells (cells in DNA synthesis phase) is a basic parameter in studies on the control of cell division cycle and the developmental events of plant cells. Here we extend the microscopy and flow cytometry applications of the recently developed EdU (5-ethynyl-2'-deoxyuridine)-based S-phase assay to various plant species and tissues. We demonstrate that the presented protocols insure the improved preservation of cell and tissue structure and allow significant reduction in assay duration. In comparison with the frequently used detection of bromodeoxyuridine (BrdU) and tritiated-thymidine incorporation, this new methodology offers several advantages as we discuss here. Results Applications of EdU-based S-phase assay in microscopy and flow cytometry are presented by using cultured cells of alfalfa, Arabidopsis, grape, maize, rice and tobacco. We present the advantages of EdU assay as compared to BrdU-based replication assay and demonstrate that EdU assay -which does not require plant cell wall digestion or DNA denaturation steps, offers reduced assay duration and better preservation of cellular, nuclear and chromosomal morphologies. We have also shown that fast and efficient EdU assay can also be an efficient tool for dual parameter flow cytometry analysis and for quantitative assessment of replication in thick root samples of rice. Conclusions In plant cell cycle studies, EdU-based S-phase detection offers a superior alternative to the existing S-phase assays. EdU method is reliable, versatile, fast, simple and non-radioactive and it can be readily applied to many different plant systems.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3