Author:
Kotogány Edit,Dudits Dénes,Horváth Gábor V,Ayaydin Ferhan
Abstract
Abstract
Background
Progress in plant cell cycle research is highly dependent on reliable methods for detection of cells replicating DNA. Frequency of S-phase cells (cells in DNA synthesis phase) is a basic parameter in studies on the control of cell division cycle and the developmental events of plant cells. Here we extend the microscopy and flow cytometry applications of the recently developed EdU (5-ethynyl-2'-deoxyuridine)-based S-phase assay to various plant species and tissues. We demonstrate that the presented protocols insure the improved preservation of cell and tissue structure and allow significant reduction in assay duration. In comparison with the frequently used detection of bromodeoxyuridine (BrdU) and tritiated-thymidine incorporation, this new methodology offers several advantages as we discuss here.
Results
Applications of EdU-based S-phase assay in microscopy and flow cytometry are presented by using cultured cells of alfalfa, Arabidopsis, grape, maize, rice and tobacco. We present the advantages of EdU assay as compared to BrdU-based replication assay and demonstrate that EdU assay -which does not require plant cell wall digestion or DNA denaturation steps, offers reduced assay duration and better preservation of cellular, nuclear and chromosomal morphologies. We have also shown that fast and efficient EdU assay can also be an efficient tool for dual parameter flow cytometry analysis and for quantitative assessment of replication in thick root samples of rice.
Conclusions
In plant cell cycle studies, EdU-based S-phase detection offers a superior alternative to the existing S-phase assays. EdU method is reliable, versatile, fast, simple and non-radioactive and it can be readily applied to many different plant systems.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Reference32 articles.
1. Taylor JH, Woods PS, Hughes WL: The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. Proc Natl Acad Sci USA. 1957, 43: 122-128. 10.1073/pnas.43.1.122.
2. Gratzner HG: Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science. 1982, 218: 474-475. 10.1126/science.7123245.
3. Stroobants C, Sossountzov L, Miginiac E: DNA Synthesis in Excised Tobacco Leaves after Bromodeoxyuridine Incorporation: Immunohistochemical Detection in Semi-thin Spurr Sections. J Histochem Cytochem. 1990, 38: 641-647.
4. Fowke LC, Cutler AJ: Plant protoplast techniques. Plant Cell Biology. A Practical Approach. Edited by: Harris N, Oparka KJ. 1994, Oxford, IRL Press, 177-196.
5. Goodbody KC, Lloyd CW: Immunofluorescence techniques for the analysis of the cytoskeleton. Plant Cell Biology. A Practical Approach. Edited by: Harris N, Oparka KJ. 1994, Oxford, IRL Press, 221-243.
Cited by
159 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献