Author:
Harrison Samuel J,Mott Ellie K,Parsley Kate,Aspinall Sue,Gray John C,Cottage Amanda
Abstract
Abstract
Background
The floral dip method of transformation by immersion of inflorescences in a suspension of Agrobacterium is the method of choice for Arabidopsis transformation. The presence of a marker, usually antibiotic- or herbicide-resistance, allows identification of transformed seedlings from untransformed seedlings. Seedling selection is a lengthy process which does not always lead to easily identifiable transformants. Selection for kanamycin-, phosphinothricin- and hygromycin B-resistance commonly takes 7–10 d and high seedling density and fungal contamination may result in failure to recover transformants.
Results
A method for identifying transformed seedlings in as little as 3.25 d has been developed. Arabidopsis T1 seeds obtained after floral dip transformation are plated on 1% agar containing MS medium and kanamycin, phosphinothricin or hygromycin B, as appropriate. After a 2-d stratification period, seeds are subjected to a regime of 4–6 h light, 48 h dark and 24 h light (3.25 d). Kanamycin-resistant and phosphinothricin-resistant seedlings are easily distinguished from non-resistant seedlings by green expanded cotyledons whereas non-resistant seedlings have pale unexpanded cotyledons. Seedlings grown on hygromycin B differ from those grown on kanamycin and phosphinothricin as both resistant and non-resistant seedlings are green. However, hygromycin B-resistant seedlings are easily identified as they have long hypocotyls (0.8–1.0 cm) whereas non-resistant seedlings have short hypocotyls (0.2–0.4 cm).
Conclusion
The method presented here is an improvement on current selection methods as it allows quicker identification of transformed seedlings: transformed seedlings are easily discernable from non-transformants in as little as 3.25 d in comparison to the 7–10 d required for selection using current protocols.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Reference17 articles.
1. Bechtold N, Ellis J, Pelletier G: In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris, Sciences de la vie/Life Sciences. 1993, 316: 1194-1199.
2. Clough SJ, Bent AF: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16: 735-743. 10.1046/j.1365-313x.1998.00343.x.
3. Nichols KW, Heck GR, Fernandez DE: Simplified selection of transgenic Arabidopsis thaliana seed in liquid culture. Biotechniques. 1997, 22: 62-63.
4. Haseloff J, Siemering KR, Prasher DC, Hodge S: Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA. 1997, 94: 2122-2127. 10.1073/pnas.94.6.2122.
5. Van Engalen FA, Molthoff JW, Conner AJ, Nap JP, Pereira A, Stiekema WJ: pBINPLUS: An improved plant transformation vector based on pBIN19. Transgenic Res. 1995, 4: 288-290. 10.1007/BF01969123.
Cited by
217 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献