Author:
Nishihara Masahiro,Shimoda Takeshi,Nakatsuka Takashi,Arimura Gen-ichiro
Abstract
Abstract
Advances in research in the past few years on the ornamental plant torenia (Torenia spps.) have made it notable as a model plant on the frontier of genetic engineering aimed at studying ornamental characteristics and pest control in horticultural ecosystems. The remarkable advantage of torenia over other ornamental plant species is the availability of an easy and high-efficiency transformation system for it. Unfortunately, most of the current torenia research is still not very widespread, because this species has not become prominent as an alternative to other successful model plants such as Arabidopsis, snapdragon and petunia. However, nowadays, a more global view using not only a few selected models but also several additional species are required for creating innovative ornamental traits and studying horticultural ecosystems. We therefore introduce and discuss recent research on torenia, the family Scrophulariaceae, for secondary metabolite bioengineering, in which global insights into horticulture, agriculture and ecology have been advanced. Floral traits, in torenia particularly floral color, have been extensively studied by manipulating the flavonoid biosynthetic pathways in flower organs. Plant aroma, including volatile terpenoids, has also been genetically modulated in order to understand the complicated nature of multi-trophic interactions that affect the behavior of predators and pollinators in the ecosystem. Torenia would accordingly be of great use for investigating both the variation in ornamental plants and the infochemical-mediated interactions with arthropods.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Reference68 articles.
1. Office of the Gene Technology Regulator, Department of Health and Ageing, Australian Govermnment: The biology of Torenia spp. (torenia). 2008
2. Yamazaki T: A revision of the genera Limnophila and Torenia from Indochina. J Fac Sci Univ Tokyo (III). 1985, 13: 575-625.
3. Aida R: A protocol for transformation of Torenia. Methods Mol Biol. 2012, 847: 267-274. 10.1007/978-1-61779-558-9_23.
4. Kikuchi S, Tanaka H, Shiba T, Mii M, Tsujimoto H: Genome size, karyotype, meiosis and a novel extra chromosome in Torenia fournieri, T. baillonii and their hybrid. Chromosome Res. 2006, 14: 665-672. 10.1007/s10577-006-1077-y.
5. Aida R: Torenia fournieri (torenia) as a model plant for transgenic studies. Plant Biotechnol. 2008, 25: 541-545. 10.5511/plantbiotechnology.25.541.