Estimation of above-ground biomass in tropical afro-montane forest using Sentinel-2 derived indices

Author:

Muhe Seid,Argaw MekuriaORCID

Abstract

AbstractEmpirical analyses were common methods for forest biomass estimation. Lately, satellite images are popularly used to study different attributes of forest vegetation. Sentinel-2 image provides a significant improvement in spectral coverage, spatial resolution and temporal frequency in assessing forest biomass. This study examined the potential use of multispectral (MS) bands, vegetation indices and biophysical variables derived from Sentinel-2 images in modeling above-ground biomass (AGB) in tropical afro-montane forest of the Yayu biosphere reserve. A coupled method of remote sensing and statistics was applied to establish a biomass estimation model using spectral data generated from Sentinel-2 image and AGB data measured from the field. Multispectral bands, vegetation indices and biophysical variables were extracted from the Sentinel-2 image. Forest stand parameters such as DBH and tree height were measured from sampling plots to calculate AGB using allometric equations. The strength of correlation between the measured biomass and the MS bands, indices and biophysical variables were examined using Pearson’s product-moment correlation coefficients. A regression analysis was iteratively applied to identify the determinant variables for predicting AGB. The prediction results were validated based on the magnitude of coefficients of determination between the observed and the predicted values and the magnitude of the Root Mean Square Error (RMSE). A strong correlation (r ranging from 0.65 to 0.74) was observed between the biophysical variables from Sentinel-2 image and the measured AGB from the field. The MS Band 4 (red band), vegetation variables LAI, FCOVER and FAPAR, and band combination index IRECI yielded better results and are good predictor variables for forest AGB. The model goodness of fit between the observed and predicted AGB showed a coefficient of determination (r2) of 0.74 and RMSE of 0.16 ton C/pixel, which shows strong performance of the prediction model. Vegetation indices derived from Sentinel-2 imagery are good predictors of AGB in tropical afro-montane forests. Sentinel-2 image has improved the reliability of biomass estimation from remotely sensed data. Since field sampling plots were few in this study, the level of accuracy will likely improve with more number of field sample measurements.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3