Inoculation of native symbiotic effective Sinorhizobium spp. enhanced soybean [Glycine max (L.) Merr.] grain yield in Ethiopia

Author:

Temesgen DiribaORCID,Assefa Fassil

Abstract

Abstract Background Soybean [Glycine max (L) Merr.] is an annual leguminous crop serving as a source of food and feed, green manure, biodiesel and fiber. It is nodulated by diverse slow growing and fast growing rhizobia belonging to the genus Bradyrhizobium and Sinorhizobium, respectively. In Ethiopia, it has been cultivated since 1950s with lower grain yield history. Yield improvement efforts have been more concentrated on agronomic studies, inoculation of exotic Bradyrhizobium japonicum including TAL379 and/or fertilizer application. The results have usually been unsatisfactory and inconsistent. This study was initiated to identify promising indigenous soybean rhizobial inoculant that can enhance yield of the crop in the country. Methods Native soybean rhizobia, designated GMR for Glycine max rhizobia, were trapped using soybean (cv. Ethio-Yugoslavia) from soils collected across agro-ecologies of Ethiopia. They were screened for in vitro tolerance against physico-chemical stresses, plant growth promoting (PGP) traits and symbiotic performances at greenhouse and field levels. A reference B. japonicum (TAL379) was included in all experiments. A soybean plant growth promoting Achromobacter sp. was also included in field trials for co-inoculation. Quantitative data were assessed by analysis of variance (ANOVA) employing SAS computer software package version 9.3. Mean separations were undertaken using Duncan’s Multiple Range Test at p ≤ 0.05. Phenotypic variability of the test bacteria was undertaken using PAST4.03 Computer Software. Result GMR that produced acid and grew faster with larger colonies were identified as Sinorhizobium spp. and those which produced alkali and grew slowly with smaller colonies were identified as Bradyrhizobium spp. though further genetic analysis should be performed for verification and identification of their genus and species, respectively. Two Sinorhizobium spp. (GMR120C and GMR125B) profoundly nodulated different soybean cultivars under greenhouse conditions and significantly improved grain yield (p ≤ 0.05; maximum 3.98 tons ha−1) compared to 2.41, 2.82 and 2.69 recorded as maximum grain yield (tons ha−1) for TAL379 inoculation, positive control and negative control, respectively in field trials. Higher yield was recorded when GMR125B was co-inoculated with Achromobacter sp., but when GMR120C was inoculated singly. These GMR also showed efficient utilization of numerous substrates, some PGP traits and potential adaptation to various ecological stresses. Conclusion The two Sinorhizobium spp. (GMR120C and GMR125B) are promising soybean inoculants that can be used to enhance the productivity of the crop in the country.

Funder

Addis Ababa University and Madda Walabu University

Publisher

Springer Science and Business Media LLC

Reference97 articles.

1. Abebe A (1986) Culture collection of Rhizobium strains of important pulses of Ethiopia. In: Paper presented at IFS Workshop on biological improvement of soil fertility. 19–25 March 1986. Dakar, Senegal

2. Abera T, Semu E, Debele T, Wegary D, Kim H (2015) Determination soil rhizobium populations, intrinsic antibiotic resistance, nodulation and seed yield of faba bean and soybean in Western Ethiopia. World J Agri Sciences 11:311–324

3. Ahemad M, Khan MS (2010) Influence of selective herbicides on plant growth promoting traits of phosphate solubilizing Enterobacter asburiae strain PS2. Res J Microbiol 5(9):849–857

4. Ahemad M, Khan MS (2011) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. Strain MRP1. Emir J Food Agric 24:334–343

5. Ahemad M, Khan MS (2012) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specificRhizobium sp. Strain MRP1. Emir J Food Agric 24:334–343

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3