A hierarchical analysis of ecosystem classification with implementing in two continental ecoregions

Author:

Zhang YanQingORCID

Abstract

Abstract Background The ecosystem classification of land (ECL) has been studied for a couple of decades, from the beginning of the perfect organism system “top-down” approach to a reversed “bottom-up” approach by defining a micro-ecological unit. After comparing two cases of the ecosystem classification framework implemented in the different continental ecoregions, the processes were carefully examined and justified. Results Theoretically, Bailey’s upper levels of ECL (Description of the ecoregions of the United States, 2nd ed. Rev and expanded (1st ed. 1980). Misc. Publ. No. 1391 (Rev). Washington DC USDA Forest Service; 1995) were applied to the United States and world continents. For the first time, a complete ECL study was accomplished in Western Utah of the United States, with eight upper levels of ECOMAP (National hierarchical framework of ecological units. U.S. Department of Agriculture, Forest Service, Washington, DC. https://www.researchgate.net/publication/237419014_National_hierarchical_framework_of_ecological_units; 1993) plus additional ecological site and vegetation stand. China’s Eco-geographic classification was most likely fitted into Bailey’s Ecosystem Classification upper-level regime. With a binary decision tree analysis, it had been validated that the Domains have an empty entity for 500 Plateau Domain between the US and China ecoregion framework. Implementing lower levels of ECL to Qinghai Province of China, based on the biogeoclimatic condition, vegetation distribution, landform, and plant species feature, it had classified the Section HIIC1 into two Subsections (labeled as i, ii), and delineated iia of QiLian Mountain East Alpine Shrub and Alpine Tundra Ecozone into iia-1 and iia-2 Subzones. Coordinately, an Ecological Site was completed at the bottom level. Conclusions (1) It was more experimental processing by implementing a full ECL in the Western Utah of the United States based on the ECOMAP (1993). (2) The empty entity, named as Plateau Domain 500, should be added into the top-level Bailey’s ecoregion framework. Coordinately, it includes the Divisions of HI and HII and the Provinces of humid, sub-humid, semiarid, and arid for China's Eco-Geographic region. (3) Implementing a full ECL in a different continent and integrating the lower level's models was the process that could handle the execution management, interpreting the relationship of ecosystem, dataset conversion, and error correction.

Funder

National Center for Ecological Analysis and Synthesis

Publisher

Springer Science and Business Media LLC

Reference59 articles.

1. Albert DA, Lapin M, Pearsall DR (2015) Knowing the territory: landscape ecosystem and mapping. The Michigan Botanist 54:34–41

2. Allen CR, Angeler DG, Garmestani AS, Gunderson LH, Holling CS (2014) Panarchy: theory and application. Ecosystems 17:578–589. https://doi.org/10.1007/s10021-013-9744-2

3. Bailey RG (1983) Identifying ecoregion boundaries. Environ Manage 34(1):14–26. https://doi.org/10.1007/s00267-003-0163-6

4. Bailey RG (1995) Description of the ecoregions of the United States, 2nd ed. Rev. and expanded (1st ed. 1980). Misc. Publ. No. 1391 (Rev). Washington DC USDA Forest Service.

5. Bailey RG (1996a) Ecosystem geography. Springer, New York

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3