Effects of landscape attributes and climate variables on catchment hydrology

Author:

Bati Hirpo Gudeta,Agumassie Tena Alamirew,Tegaye Tenalem Ayenew,Belete Mulugeta Dadi

Abstract

AbstractCatchments characteristics, such as geomorphology, geology, soil, land use, and climatic variables, play an important role in total stream flow responses, a critical resource for people and the environment. Most of the previous literatures were applied a conventional statistical regression model to assess the relationship between landscape-climate descriptors, and streamflow and PET. However, a conventional statistical regression model didn’t consider dependence of explanatory variables that were collected or extracted across both space and time. This paper investigated the impacts of landscape attributes and climate variables on catchment scale temporal variation of total streamflow and spatio-temporal variation of potential evapotranspiration (PET) in the Mille catchment using multiple linear regression techniques, and the importance of this study was to test spatial autocorrelation in the spatial regression model which is required to properly assess and quantify the relationship between hydrological regime response components and Landscape-climate descriptors in a catchment with topographically complex, and high spatio-temporal climatic variation like in our case study area, the Mille catchment. Statistical regression analysis revealed significant relationships between streamflow and climate variables, especially with rainfall. Mean maximum temperature is the most dominant factor controlling temporal variation of potential evapotranspiration at a monthly scale, whereas NDVI is the most significant factor that controls the spatial variability of PET. The multiple regression model shows that 91.1% of temporal variation in streamflow was accounted for rainfall, whereas, 96.6% and 78.4% of temporal and spatial variation in potential evapotranspiration was accounted for in maximum temperature and NDVI, respectively. Methods also can be applied to catchments with similar landscape attributes and climate variables.

Funder

Africa Center of Excellence for Water Management, Addis Ababa University, Ethiopia.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3