Modelling scenarios for sustainable water supply and demand in Addis Ababa city, Ethiopia

Author:

Alemu Zinabu Assefa,Dioha Michael O.

Abstract

Abstract Background The city of Addis Ababa is under rapid development and there are enormous construction activities along with rapid urbanization, and industrialization. These anthropogenic actions combined with population growth rate are affecting the water demand of the city. The overall purpose of this study is to model water supply and demand of the city and to identify potential water management strategies that supports the sustainable development goal number six (SDG6)—clean water and sanitation. Methods We employed the Water Evaluation and Planning system (WEAP) modelling framework to analyze different scenarios for water demand and supply. The scenarios include population growth, living standard, as well as other supply and demand strategies. Results For the modelling period, the reference scenario shows unmet water demand increases by around 48%, from 208 to 307 million cubic meter in 2015 and 2030 respectively. High population growth rate and high living standard scenarios have a great negative impact on the water supply system. Conclusions Satisfying the future water demand of Addis Ababa will depend on the measures which are taken today. The integrated water management practices such as reuse of water and the selected future scenarios are proposed to decrease and manage the unmet water demand of the city. Hence, future predicted scenarios which is the combination of the external factors (i.e. population growth rate and living standard) and water management strategies were considered. From the analyzed scenarios, optimistic future strategies will support the management of the existing water supply and demand system of the city. Similarly, in the integrated management strategies scenario, it was assumed that measures were taken at both the demand and supply side to improve the efficiency of water in the entire chain. Thus, if the water sector professionals and other concerned bodies consider the selected scenarios, it will go a long way to solve the water shortage problem in the city, and this will also help to promote sustainable water management.

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. Abdelmalek MB, Nouiri I, Saidi F (2017) Application of the Water evaluation and Planning Model (WEAP) for Water Resources Management in the Nabhana Watershed, Center Tunisia. Proceedings of 1st Euro-Mediterranean Conference for Environmental Integration (EMCEI)

2. Admasie AM (2016) Assessment of the water demand management of condominium houses considering grey water reuse- the case of mickey Leland and Jemo Gara Addis Ababa. AAIT SCEE, Ethiopia

3. Al-Omari A, Al-Quraan S, Al-Salihi A, Abdulla F (2009) A water management support system for Amman Zarqa basin in Jordan. Water Resour Manage 23:3165–3189. https://doi.org/10.1007/s11269-009-9428-z

4. Amsal ED, Mebrate T (2016) An Integrated Approach to Water Supply Planning: Case of Addis Ababa (Nifas Silk Lafto sub city). Addis Ababa University Institute of Technology, Ethiopia

5. Arsiso BK, Tsidu GM, Stoffberg GH, Tadesse T (2017) Climate change and population growth impacts on surface water supply and demand of Addis Ababa, Ethiopia. Climate Risk Manag 18:21–33

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3