Evaluation and comparison of infiltration models for estimating infiltration capacity of different textures of irrigated soils

Author:

Mesele Halefom,Grum Berhane,Aregay Gebremeskel,Berhe Gebremeskel Teklay

Abstract

AbstractAccurate estimation of infiltration rates is crucial for effective irrigation system design and evaluation by optimizing irrigation scheduling, preventing soil erosion, and enhancing water use efficiency. This study evaluates and compares selected infiltration models for estimating water infiltration rates in the Shillanat-iv irrigation scheme in northern Ethiopia. Soil samples were collected to determine textural classes using hydrometer soil texture analysis and the United States Department of Agriculture (USDA) textural triangle. The soil textural map of the study was created using the inverse distance weight interpolation technique in ArcGIS version 10.4. Infiltration rates were measured using the double-ring infiltrometer for five soil textures: clay loam, loam, sandy clay loam, clay, and sandy loam. Six infiltration models (Kostiakov, Modified Kostiakov, Revised Modified Kostiakov, Philip, Horton, and Novel) were employed and evaluated using statistical parameters. Model calibration and validation were conducted using data from 38 points within the study area. The parameter values of the infiltration models were optimized using SPSS statistical software using least-squares errors. The results showed that, Revised Modified Kostiakov, Modified Kostiakov, and Novel infiltration models demonstrated superior capability in estimating infiltration rates for clay loam, loam, and sandy loam soil textures, respectively. Horton's model outperformed other models in estimating infiltration rates for both sandy clay loam and clay soil textures. The appropriately fitted infiltration models can be utilized in designing the irrigation system to estimate the infiltration rate of soil textures within the selected irrigation scheme and at similar sites with comparable soil textures.

Funder

Norwegian Agency for Development Corporation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3