Author:
Woldesenbet Alemu Beyene,Wudmatas Sebsebe Demisew,Denboba Mekuria Argaw,Gebremariam Azage Gebreyohannes
Abstract
Abstract
Background
Water erosion, upland degradation and deforestation are key environmental problems in the Meki river watershed. The study assessed the land use land cover change (LULCC) for 30 years and it examined the contribution of indigenous Enset-based land use system (EBLUS) to reduce soil erosion and prevent water bodies including Lake Ziway from sedimentation which was not considered in the former studies. GPS based data collected and satellite based LULC analysis using ERDAS Imagine 2014 performed to investigate existing farm management practices and land cover respectively. HEC-GEOHMS, Geo-statistical interpolation and RUSLE were applied to model watershed characteristics, spatial climate parameters and soil loss respectively.
Result
Meki river watershed (2110.4 km2 of area) is dominantly covered by cultivated LUS (41.5%), EBLUS (10.65%), Bush and Chat LUS (25.6%), Forest and plantations LUS (14.14%), built-up (7.4%) and water bodies (0.75%). Soil loss is increasing from 1987 to 2017 and a larger part of the watershed suffers a moderately severe to very severe risk (18 t ha−1 year−1 to > 80 t ha−1 year−1) in all sub-watersheds irrespective of the land use systems which shows the watershed is facing sever degradation problem. The mean soil loss of 30.5 t ha−1 year−13 and 31.905 t ha−1 year−1 are verified from Enset growing zones and non-Enset growing zones of the watershed respectively.
Conclusion
EBLUS saves significant amount of soil despite the steepness of the slopes of the Enset growing zones of the watershed. Hence, expansion of EBLUS can contribute in sustaining water bodies, including Lake Ziway by reducing soil loss rate and sedimentation problem for the ecological sustainability of the watershed. Therefore, separate land use policy and awareness creation are mandatory for such EBLUS expansion, sustainable watershed management interventions and conservation of the natural environment in the watershed based on its suitability and severity of erosion risk mapping.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Abate S (2011) Estimating soil loss rates for soil conservation planning in the Borena woreda of South Wollo highlands, Ethiopia. J Sustain Dev Afr 13(3):87–106
2. Alemu OA, Chane B, Melesse AM (2018) Soil erosion modelling and risk assessment in data scarce Rift Valley Lake Regions, Ethiopia. Water 10:1684. https://doi.org/10.3390/w10111684
3. Andrew A, Millward E, Mersey J (1999) Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. CATENA 38:109–129
4. Angima SD, Stott DE, O’Neill MK, Ong CK, Weesies GA (2003) Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agric Ecosyst Environ 97:1029–1049
5. Anita S, Haile B, Tesfaye S, Abebe YAmaldegn A, Tabogie E (1996). Enset farming systems in Southern Region, Ethiopia. Report on a Rapid Rural Appraisal in Gurage, Hadiya and Sidama Zones, University of Florida. Deutsche Gesellschaft for Technische Zusammenarbeit (GTZ), 83
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献