Understanding the spread of antibiotic resistance in vegetables cultivated with sewage sludge: implications for food safety and human health

Author:

Patra Mrinmoy,Dubey Suresh Kumar

Abstract

AbstractThe conventional practice of using sewage treatment plant (STP) derived sludge as a fertilizer poses significant negative impacts on agroecosystems. Since sludge has diverse contaminants, including heavy metals (HMs), antibiotics (ABs) and antibiotic resistance genes (ARGs), its application in the agricultural fields contaminates the food and hence causes human health risks via the food chain. The transfer of ABs and ARGs from sludge to soil and then to plants can influence the development of antibiotic resistance (AR) in plant endophytes, and leads to variations in their characteristics. In a pot experiment, vegetable carrot (Daucus carota) and spinach (Spinacia oleracea) were amended with sludge samples from three sewage treatment plants (STPs) with varying treatment capacities and both above and below-ground parts of the plants were analysed for the presence of specific ABs (amoxicillin, azithromycin, chloramphenicol, ciprofloxacin, tetracycline), ARGs (blaCTX-M, blaGES, blaNDM, ermF, qnrS, Sul1), and mobile genetic elements (MGEs) (intl1, IS26). Among the characterized culturable endophytic bacteria (EB), 22 exhibited resistance to various antibiotics (highest against ampicillin, ciprofloxacin, chloramphenicol) and heavy metals (highest against lead, nickel, and chromium). Most importantly, seven multiple antibiotic-resistant endophytic bacteria (MAREB) exhibited resistance to all tested heavy metals (HMs). Additionally, all MAREB tested positive for biofilm production, and a notable proportion (72.72%) of these endophytes displayed mobility, with strong auto-aggregation ranging from 16.67 to 92.61%. The biofilm formation dynamics among these MAREB exhibited a Gaussian distribution pattern, increasing with higher antibiotic concentrations. Notably, five MAREB demonstrated survival at clarithromycin concentrations up to 150 µg ml−1. The study revealed the presence of ABs (µg kg−1) and ARGs (copies kg−1) in all parts of both vegetables, ranging from 2.87 to 314.88 and 1 × 105 to 3.2 × 1010, respectively. MAREB displayed various advantageous features to support plant growth under different stress conditions. Moreover, 51.09% of the identified EBs were reported as both plant and human-associated pathogens, and 9.09% were solely human pathogens. Transfer factor (TF), translocation factor (TLF), and bioconcentration factor (BCF) values were correlated with higher ABs and ARGs abundance in the root and shoot compartments of both vegetables. The risk assessment for ABs and ARGs highlighted children are particularly vulnerable to prolonged adverse health risks from consuming these vegetables. Therefore, this research is imperative for understanding the co-selection mechanisms, the need for improvement of the existing treatment systems in contaminants removal, and the evaluation of the presence of ABs and ARGs in sludge before its application in agricultural fields.

Funder

University Grants Commission

Institutions of Eminence

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3