Abstract
Abstract
Background
Electrosurgical excisions are common procedures for treating cervical dysplasia and are often seen as minor surgeries. Yet, thorough training of this intervention is required, as there are considerable consequences of inadequate resections, e.g. preterm birth, the risk of recurrence, injuries and many more. Unfortunately, there is a lack of sufficiently validated possibilities of simulating electrosurgeries, which focus on high fidelity and patient safety.
Methods
A novel 3D printed simulator for examination and electrosurgical treatment of dysplastic areas of the cervix was compared with a conventional simulator. Sixty medical students experienced a seminar about cervical dysplasia. Group A underwent the seminar with the conventional and Group B with the novel simulator. After a theoretical introduction, the students were randomly assigned by picking a ticket from a box and went on to perform the hands-on training with their respective simulator. Each student first obtained colposcopic examination training. Then he or she performed five electrosurgical excisions (each). This was assessed with a validated score, to visualize their learning curve. Furthermore, adequate and inadequate resections and contacts between electrosurgical loop and vagina or speculum were counted. Both groups also assessed the seminar and their simulator with 18 questions (Likert-scales, 1–10, 1 = strongly agree / very good, 10 = strongly disagree / very bad). Group B additionally assessed the novel simulator with four questions (similar Likert-scales, 1–10).
Results
Nine of 18 questions showed statistically significant differences favoring Group B (p < 0.05). Group B also achieved more adequate R0-resections and less contacts between electrosurgical loop and vagina or speculum. The learning curves of the performed resections favored the novel simulator of Group B without statistically significant differences. The four questions focusing on certain aspects of the novel simulator indicate high appreciation of the students with a mean score of 1.6 points.
Conclusion
The presented novel simulator shows several advantages compared to the existing model. Thus, novice gynecologists can be supported with a higher quality of simulation to improve their training and thereby patient safety.
Funder
Universitätsklinikum Würzburg
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Radiology, Nuclear Medicine and imaging,Biomedical Engineering
Reference43 articles.
1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
2. C. Kerschgens, Zygmunt M, M.C. Koch, M.W. Beckmann. S3-Leitlinie Diagnostik, Therapie und Nachsorge der Patientin mit Zervixkarzinom. S3-Leitlinie, Version 1.0 – September 2014. 2014. AWMF-Registernummer 032/033OL.
3. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
4. Bujan Rivera J, Klug SJ. Cervical cancer screening in Germany. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61(12):1528–35.
5. Bornstein J, Bentley J, Bösze P, et al. 2011 colposcopic terminology of the International Federation for Cervical Pathology and Colposcopy. Obstet Gynecol. 2012;120(1):166–72.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献