Abstract
Abstract
Background
Failure rates with cranioplasty procedures have driven efforts to improve graft material and reduce reoperation. One promising allograft source is a 3D-printed titanium mesh with calcium phosphate filler. This study evaluated failure rates and pertinent characteristics of these novel 3D-grafts compared to traditional materials.
Methods
Sixty patients were retrospectively identified who underwent a cranioplasty between January 2015–December 2017. Specific data points related to graft failure were collected for all surgical admissions, from the primary injury to their most recent. These included, but were not limited to, initial physical exam findings, vitals, comorbid conditions, surgery length, estimated blood loss, incision type, and need for revision. Failure rates of 3D-printed allografts were compared to traditional grafts.
Results
A total of 60 subjects were identified who underwent 71 unique cranioplasty procedures (3D = 13, Synthetic = 12, Autologous = 46). There were 14 total failures, demonstrating a 19.7% overall failure rate. Specifically, 15.4% (n = 2) of 3D, 19.6% (n = 9) of autologous, and 25.0% (n = 3) of synthetic grafts required revision. Patients receiving 3D-grafts had the shortest overall mean surgery times (200.8 ± 54.3 min) and lowest infection rates (7.7%) compared to autologous (210.5 ± 47.9 min | 25.0%) and synthetic models (217.6 ± 77.3 min | 8.7%), though significance was unable to be determined. Tobacco use and trap-door incisions were associated with increased failure rates relative to straight or curved incisions in autologous grafts. Cranioplasties performed less than 3 months after craniectomy appeared to fail more often than those performed at least three months after craniectomy, for the synthetic group.
Conclusion
We concluded that 3D-printed cranioplasty grafts may lead to lower failure rates and shorter surgery times compared to traditional cranioplasty materials in our limited population. 3D-implants hold promise for cranial reconstruction after TBI.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Radiology, Nuclear Medicine and imaging,Biomedical Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献