Introducing 3D printed models of the upper urinary tract for high-fidelity simulation of retrograde intrarenal surgery

Author:

Orecchia LucaORCID,Manfrin Diego,Germani Stefano,Del Fabbro Dario,Asimakopoulos Anastasios D.,Finazzi Agrò Enrico,Miano Roberto

Abstract

Abstract Purpose Training in retrograde intrarenal surgery for the treatment of renal stone disease is a challenging task due to the unique complexity of the procedure. This study introduces a series of 3D printed models of upper urinary tract and stones designed to improve the training process. Methods Six different models of upper urinary tract were algorithmically isolated, digitally optimized and 3D printed from real-life cases. Soft and hard stones in different sizes were produced from 3D printed moulds. The models were fitted onto a commercially available part-task trainer and tested for retrograde intrarenal surgery. Results Each step of the procedure was simulated with extraordinary resemblance to real-life cases. The unique anatomical intricacy of each model and type of stones allowed us to reproduce surgeries of increasing difficulty. As the case-load required to achieve proficiency in retrograde intrarenal surgery is high, benchtop simulation could be integrated in training programs to reach good outcomes and low complication rates faster. Our models match incredible anatomical resemblance with low production cost and high reusability. Validation studies and objective skills assessment during simulations would allow comparison with other available benchtop trainers and the design of stepwise training programs. Conclusions 3D printing is gaining a significant importance in surgical training. Our 3D printed models of the upper urinary tract might represent a risk-free training option to hasten the achievement of proficiency in endourology.

Funder

Medics3D, Moncalieri, italy

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3