The key role of 3D printing and the new medical sterilizable threads in the development of the translaryngeal Tracheostomy Needle Introducer

Author:

Terrani AlessandroORCID,Bassi Enrico,Ornaghi Alberto,Bellani Giacomo,Foti Giuseppe

Abstract

Abstract Background Percutaneous tracheostomy is frequently performed in intensive care units in patients who require prolonged mechanical ventilation. The first crucial step for the physician in these procedures is the precise needle insertion into the trachea. The primary aim of this technical note was to test the new filament and share our experiences in the implementation of the new device. The secondary aim was to show how a physician with basic training in computer-aided design and three-dimensional (3D) printing could independently create useful devices for clinical practice. Methods To simplify this referred clinical procedure and increase its safety, 3D printing and a new medical filament were used to develop a new translaryngeal Tracheostomy Needle Introducer (tTNI) for use in conjunction with the Fantoni’s method of percutaneous tracheostomy. The tTNI is composed of three parts: a support to fit on the rigid endotracheal tube of the Fantoni kit, an external particular shaped arm, and an introducer for the needle. The latest version of the device used a new filament based on a polyester matrix certified for skin contact that was sterilizable in a standard autoclave. Post-printing, minor technical interventions were required to correct small material deformities. Conclusions Our experiences with the thread and the technical features of the material were reported herein in conjunction with some suggestions on how to solve the most frequently encountered problems. The 3D printing technique allows physicians to directly manage the prototyping process of new medical devices, making this process completely independent. The speed of the prototyping process and the testing of each piece allow faster creation of a prototype than with traditional industrial methods. Finally, the new biomedical filaments offer endless possibilities of creation and modelling.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology Nuclear Medicine and imaging,Biomedical Engineering

Reference17 articles.

1. Abe T, Madotto F, Pham T, Nagata I, Uchida M, Tamiya N, et al. Epidemiology and patterns of tracheostomy practice in patients with acute respiratory distress syndrome in ICUs across 50 countries. Crit Care. 2018;22(1):195. https://doi.org/10.1186/s13054-018-2126-6.

2. Vargas M, Servillo G, Arditi E, Brunetti I, Pecunia L, Salami D, et al. Tracheostomy in intensive care unit: a national survey in Italy. Minerva Anestesiol. 2013;79(2):156–64.

3. Gi.Vi.Ti Group. Progetto MargheritaPROSAFE–PROmoting patient SAFEty research and quality improvement in critical care medicine. Report 2015. Bergamo: Sestante Edition; 2016.

4. Dauri M, Improta S. Device for tracheotomy WO 2007/017447 A2; 2007.

5. Margolin G, Karling J. A dilator assembly, a device to facilitating tracheostomy and method of making a percoutaneus tracheostoma WO 2011/012554 A1; 2011.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3