3D printed ventilation tubes and their effect on biological models

Author:

Govea-Camacho Luis Humberto,Castillo-López Irma Yolanda,Carbajal-Castillo Sergio Alejandro,Gonzalez-Ojeda Alejandro,Cervantes-Guevara Gabino,Cervantes-Pérez Enrique,Ramírez-Ochoa Sol,Vázquez-Sánchez Sergio Jiram,Delgado-Hernández Gonzalo,Tavares-Ortega Jaime Alberto,González-Muñoz Samantha Emily,Fuentes-Orozco Clotilde

Abstract

Abstract Background Acute otitis media (AOM) causes inflammation and hearing loss. Ventilation tubes are key in treatment. 3D printing improves prostheses in otorhinolaryngology, offering precision and greater adaptability. Materials and methods An experimental study was conducted with Wistar rats from July to December 2020. 3D tympanostomy tube models were designed, with technical specifications and tests performed on inexpensive 3D printers. The tympanostomy tube was inserted endoscopically. Results Procedures were performed on five rats with implants in both ears. Pre-intervention pathologies, such as atical retraction and glue ear, were found. The PLA-printed tympanostomy tube showed improvement after adjustments. Histopathological results revealed significant middle and inner ear damage. Conclusion In our study, the design and 3D printing of implants fulfilled the desired functions when modified, with a height of 5 mm. Complications included PLA degradation and ear damage. There were no adverse events during observation, highlighting the need for further research on 3D-printed implants.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3