3D printed bone models in oral and cranio-maxillofacial surgery: a systematic review

Author:

Meglioli Matteo,Naveau Adrien,Macaluso Guido Maria,Catros SylvainORCID

Abstract

Abstract Aim This systematic review aimed to evaluate the use of three-dimensional (3D) printed bone models for training, simulating and/or planning interventions in oral and cranio-maxillofacial surgery. Materials and methods A systematic search was conducted using PubMed® and SCOPUS® databases, up to March 10, 2019, by following the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) protocol. Study selection, quality assessment (modified Critical Appraisal Skills Program tool) and data extraction were performed by two independent reviewers. All original full papers written in English/French/Italian and dealing with the fabrication of 3D printed models of head bone structures, designed from 3D radiological data were included. Multiple parameters and data were investigated, such as author’s purpose, data acquisition systems, printing technologies and materials, accuracy, haptic feedback, variations in treatment time, differences in clinical outcomes, costs, production time and cost-effectiveness. Results Among the 1157 retrieved abstracts, only 69 met the inclusion criteria. 3D printed bone models were mainly used as training or simulation models for tumor removal, or bone reconstruction. Material jetting printers showed best performance but the highest cost. Stereolithographic, laser sintering and binder jetting printers allowed to create accurate models with adequate haptic feedback. The cheap fused deposition modeling printers exhibited satisfactory results for creating training models. Conclusion Patient-specific 3D printed models are known to be useful surgical and educational tools. Faced with the large diversity of software, printing technologies and materials, the clinical team should invest in a 3D printer specifically adapted to the final application.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3