Use of patient specific 3D printed neurovascular phantoms to simulate mechanical thrombectomy

Author:

Sommer Kelsey N.ORCID,Bhurwani Mohammad Mahdi Shiraz,Tutino Vincent,Siddiqui Adnan,Davies Jason,Snyder Kenneth,Levy Elad,Mokin Maxim,Ionita Ciprian N.

Abstract

Abstract Background The ability of the patient specific 3D printed neurovascular phantoms to accurately replicate the anatomy and hemodynamics of the chronic neurovascular diseases has been demonstrated by many studies. Acute occurrences, however, may still require further development and investigation and therefore we studied acute ischemic stroke (AIS). The efficacy of endovascular procedures such as mechanical thrombectomy (MT) for the treatment of large vessel occlusion (LVO), can be improved by testing the performance of thrombectomy devices and techniques using patient specific 3D printed neurovascular models. Methods 3D printed phantoms were connected to a flow loop with physiologically relevant flow conditions, including input flow rate and fluid temperature. A simulated blood clot was introduced into the model and placed in the proximal Middle Cerebral Artery (MCA) region. Clot location, composition, length, and arterial angulation were varied and MTs were simulated using stent retrievers. Device placement relative to the clot and the outcome of the thrombectomy were recorded for each situation. Digital subtraction angiograms (DSA) were captured before and after LVO simulation. Recanalization outcome was evaluated using DSA as either ‘no recanalization’ or ‘recanalization’. Forty-two 3DP neurovascular phantom benchtop experiments were performed. Results Clot angulation within the MCA region had the most significant impact on the MT outcome, with a p-value of 0.016. Other factors such as clot location, clot composition, and clot length correlated weakly with the MT outcome. Conclusions This project allowed us to gain knowledge of how such characteristics influence thrombectomy success and can be used in making clinical decisions when planning the procedure and selecting specific thrombectomy tools and approaches.

Funder

national institutes of health

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3