Two-photon lithography for customized microstructured surfaces and their influence on wettability and bacterial load

Author:

Zagiczek Sophie Nilsson,Weiss-Tessbach Matthias,Kussmann Manuel,Moser Doris,Stoiber Martin,Moscato Francesco,Schima Heinrich,Grasl Christian

Abstract

Abstract Background Device-related bacterial infections account for a large proportion of hospital-acquired infections. The ability of bacteria to form a biofilm as a protective shield usually makes treatment impossible without removal of the implant. Topographic surfaces have attracted considerable attention in studies seeking antibacterial properties without the need for additional antimicrobial substances. As there are still no valid rules for the design of antibacterial microstructured surfaces, a fast, reproducible production technique with good resolution is required to produce test surfaces and to examine their effectiveness with regard to their antibacterial properties. Methods In this work various surfaces, flat and with microcylinders in different dimensions (flat, 1, 3 and 9 μm) with a surface area of 7 × 7 mm were fabricated with a nanoprinter using two-photon lithography and evaluated for their antibiofilm effect. The microstructured surfaces were cultured for 24 h with different strains of Pseudomonas aeruginosa and Staphylococcus aureus to study bacterial attachment to the patterned surfaces. In addition, surface wettability was measured by a static contact angle measurement. Results Contact angles increased with cylinder size and thus hydrophobicity. Despite the difference in wettability, Staphylococcus aureus was not affected by the microstructures, while for Pseudomonas aeruginosa the bacterial load increased with the size of the cylinders, and compared to a flat surface, a reduction in bacteria was observed for one strain on the smallest cylinders. Conclusions Two-photon lithography allowed rapid and flexible production of microcylinders of different sizes, which affected surface wettability and bacterial load, however, depending on bacterial type and strain.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3