Computer-assisted subcapital correction osteotomy in slipped capital femoral epiphysis using individualized drill templates

Author:

Zakani Sima,Chapman Christopher,Saule Adam,Cooper Anthony,Mulpuri KishoreORCID,Wilson David R.

Abstract

Abstract Background Subcapital osteotomy by means of surgical hip dislocation is a treatment approach offered for moderate-to-severe cases of Slipped Capital Femoral Epiphysis (SCFE). This procedure is demanding, highly dependent on the surgeon’s experience, and requires considerable radiation exposure for monitoring and securing the spatial alignment of the femoral head. We propose the use of individualized drill guides as an accurate method for placing K-wires during subcapital correction osteotomies in SCFE patients. Methods Five CT scans of the hip joint from otherwise healthy patients with moderate-to-severe SCFE were selected (ages 11–14). Three dimensional models of each patient’s femur were reconstructed by manual segmentation and physically replicated using additive manufacturing techniques. Five orthopaedic surgeons virtually identified the optimal entry point and direction of the two threaded wires for each case. 3D printed drill guides were designed specific to each surgical plan, with one side shaped to fit the patient’s bone and the other side containing holes to guide the surgical drill. Each surgeon performed three guided (using the drill guides) and three conventional (freehand) simulated procedures on each case. Each femur model was laser scanned and digitally matched to the preoperative model for evaluation of entry points and wire angulations. We compared wire entry point, wire angulation, procedure time and number of x-rays between guided and freehand simulated surgeries. Results The guided group (1.4 ± 0.9 mm; 2.5° ± 1.4°) was significantly more accurate than the freehand group (5.8 ± 3.2 mm; 5.3° ± 4.4°) for wire entry location and angulation (p < 0.001). Guided surgeries required significantly less drilling time and intraoperative x-rays (90.5 ± 42.2 s, 3 ± 1 scans) compared to the conventional surgeries (246.8 ± 122.1 s, 14 ± 5 scans) (p < 0.001). Conclusions We conclude that CT-based preoperative planning and intraoperative navigation using individualized drill guides allow for improved accuracy of wires, reduced operative time and less radiation exposure in simulated hips. Clinical relevance This preliminary study shows promising results, suggesting potential direct benefits to SCFE patients by necessitating less time under anesthesia and less intra-operative radiation exposure to patients, and increasing surgical accuracy.

Funder

Rare Disease Foundation and BC Children’s Foundation

Michael Smith Foundation for Health Research

Natural Sciences and Engineering Research Council of Canada

BC Children's Hospital Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3