Design and Development of a Novel 3-D Printed External Fixation Device for Fracture Stabilization

Author:

Skelley Nathan Wm.

Abstract

Abstract Background An external fixator is an orthopaedic device used to stabilize long bone fractures after high energy trauma. These devices are external to the body and fixed to metal pins going into non-injured areas of bone. They serve a mechanical function to maintain length, prevent bending, and resist torque forces about the fracture area. The purpose of this manuscript is to describe a design and prototyping process creating a low-cost entirely 3-D printed external fixator for fracture stabilization of extremity fractures. The secondary objective of this manuscript is to facilitate future advancements, modifications, and innovations in this area of 3-D printing in medicine. Methods This manuscript describes the computer aided design process using desktop fused deposition modeling to create a 3-D printed external fixator system designed for fracture stabilization. The device was created using the orthopaedic goals for fracture stabilization with external fixation. However, special modifications and considerations had to be accounted for given the limitations of desktop fused deposition modeling and 3-D printing with plastic polymers. Results The presented device accomplishes the goals of creating a construct that can be attached to 5.0 mm metal pins, allows for modularity in placement orientations, and facilitates adjustable lengths for fracture care. Furthermore, the device provides length stability, prevention of bending, and resists torque forces. The device can be printed on a desktop 3-D printer using standard low-cost polylactic acid filament. The print time is less than two days and can be completed on one print bed platform. Conclusions The presented device is a potential alternative for fracture stabilization. The concept of a desktop 3-D printed external fixator design and method of production allows for numerous diverse applications. This includes assisting areas with remote or limited access to advanced medical care and large-scale natural disasters or global conflicts where large volumes of fractures exceed the local medical supply chain capabilities. The presented device creates a foundation for future devices and innovations in this fracture care space. Further research is needed on mechanical testing and clinical outcomes with this design and initiative in fracture care before clinical application.

Funder

University of South Dakota

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3