Investigation of different electrochemical cleaning methods on contaminated healing abutments in vitro: an approach for metal surface decontamination

Author:

Kyaw Thiha TinORCID,Hanawa Takao,Kasugai Shohei

Abstract

Abstract Background To evaluate the effects of electrolysis on cleaning the contaminated healing abutment surface and to detect the optimal condition for cleaning the contaminated healing abutment. Methods Ninety healing abutments removed from patients were placed in 1% sodium dodecyl sulfate solution and randomly divided for electrolysis with 7.5% sodium bicarbonate in the following three different apparatuses (N = 30): two stainless steel electrodes (group I), a copper electrode and a carbon electrode (group II), and two carbon electrodes (group III). The samples were placed on cathode or anode with different electric current (0.5, 1, and 1.5 A) under constant 10 V for 5 min. Electrolyte pH before and after electrolysis were measured. Then, the samples were stained with phloxine B and photographed. The proportion of stained areas was calculated. The surface was examined with a scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS). Results Electrolyte pH decreased after electrolysis at 1 A and 1.5 A in group I and II. Applying cathode at 1 A in group III, the amount of residual contamination was the lowest in all the conditions examined in the present study. SEM images revealed that applying cathode at 1.5 A in group I induced a rough surface from the smooth surface before the treatment. EDS analysis confirmed that the surfaces treated on cathode at 1 A in group III revealed no signs of organic contamination. Conclusion Electrolysis of using carbon as electrodes, placing the contaminated healing abutments on cathode, and applying the electric current of 1 A at constant 10 V in 7.5% sodium bicarbonate could completely remove organic contaminants from the surfaces. This optimized electrochemical cleaning method seems to be well worth investigation for the clinical management of peri-implant infections.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3