Abstract
Abstract
Background
To evaluate the effects of electrolysis on cleaning the contaminated healing abutment surface and to detect the optimal condition for cleaning the contaminated healing abutment.
Methods
Ninety healing abutments removed from patients were placed in 1% sodium dodecyl sulfate solution and randomly divided for electrolysis with 7.5% sodium bicarbonate in the following three different apparatuses (N = 30): two stainless steel electrodes (group I), a copper electrode and a carbon electrode (group II), and two carbon electrodes (group III). The samples were placed on cathode or anode with different electric current (0.5, 1, and 1.5 A) under constant 10 V for 5 min. Electrolyte pH before and after electrolysis were measured. Then, the samples were stained with phloxine B and photographed. The proportion of stained areas was calculated. The surface was examined with a scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS).
Results
Electrolyte pH decreased after electrolysis at 1 A and 1.5 A in group I and II. Applying cathode at 1 A in group III, the amount of residual contamination was the lowest in all the conditions examined in the present study. SEM images revealed that applying cathode at 1.5 A in group I induced a rough surface from the smooth surface before the treatment. EDS analysis confirmed that the surfaces treated on cathode at 1 A in group III revealed no signs of organic contamination.
Conclusion
Electrolysis of using carbon as electrodes, placing the contaminated healing abutments on cathode, and applying the electric current of 1 A at constant 10 V in 7.5% sodium bicarbonate could completely remove organic contaminants from the surfaces. This optimized electrochemical cleaning method seems to be well worth investigation for the clinical management of peri-implant infections.
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Kyaw TT, Nakata H, Takayuki M, Kuroda S, Kasugai S. Evaluation of residual contamination on healing abutments after cleaning with protein denaturing agent and detergent. Quintessence Int. 2020;51:474–85.
2. Quaranta A, Lim ZW, Tang J, Perrotti V, Leichter J. The impact of residual subgingival cement on biological complications around dental implants: a systematic review. Implant Dent. 2017;26:465–74.
3. Lang NP, Berglundh T. Working group 4 of the seventh european workshop on periodontology. Periimplant diseases: where are we now? Consensus of the seventh european workshop on periodontology. J Clin Periodontol. 2011;38:178–81.
4. Renvert S, Roos-Jansåker AM, Claffey N. Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol. 2008;35:305–15.
5. Sahrmann P, Ronay V, Sener B, Jung RE, Attin T, Schmidlin PR. Cleaning potential of glycine air-flow application in an in vitro peri-implantitis model. Clin Oral Implants Res. 2013;24:666–70.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献